24,439 research outputs found

    GaN/AlN Quantum Dots for Single Qubit Emitters

    Full text link
    We study theoretically the electronic properties of cc-plane GaN/AlN quantum dots (QDs) with focus on their potential as sources of single polarized photons for future quantum communication systems. Within the framework of eight-band k.p theory we calculate the optical interband transitions of the QDs and their polarization properties. We show that an anisotropy of the QD confinement potential in the basal plane (e.g. QD elongation or strain anisotropy) leads to a pronounced linear polarization of the ground state and excited state transitions. An externally applied uniaxial stress can be used to either induce a linear polarization of the ground-state transition for emission of single polarized photons or even to compensate the polarization induced by the structural elongation.Comment: 6 pages, 9 figures. Accepted at Journal of Physics: Condensed Matte

    CENP-A Is Dispensable for Mitotic Centromere Function after Initial Centromere/Kinetochore Assembly

    Get PDF
    Human centromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive alphoid DNA sequences. By inducing rapid, complete degradation of endogenous CENP-A, we now demonstrate that once the first steps of centromere assembly have been completed in G1/S, continued CENP-A binding is not required for maintaining kinetochore attachment to centromeres or for centromere function in the next mitosis. Degradation of CENP-A prior to kinetochore assembly is found to block deposition of CENP-C and CENP-N, but not CENP-T, thereby producing defective kinetochores and failure of chromosome segregation. Without the continuing presence of CENP-A, CENP-B binding to alphoid DNA sequences becomes essential to preserve anchoring of CENP-C and the kinetochore to each centromere. Thus, there is a reciprocal interdependency of CENP-A chromatin and the underlying repetitive centromere DNA sequences bound by CENP-B in the maintenance of human chromosome segregation

    Spin-flip processes and ultrafast magnetization dynamics in Co - unifying the microscopic and macroscopic view of femtosecond magnetism

    Full text link
    The femtosecond magnetization dynamics of a thin cobalt film excited with ultrashort laser pulses has been studied using two complementary pump-probe techniques, namely spin-, energy- and time-resolved photoemission and time-resolved magneto-optical Kerr effect. Combining the two methods it is possible to identify the microscopic electron spin-flip mechanisms responsible for the ultrafast macroscopic magnetization dynamics of the cobalt film. In particular, we show that electron-magnon excitation does not affect the overall magnetization even though it is an efficient spin-flip channel on the sub-200 fs timescale. Instead we find experimental evidence for the relevance of Elliott-Yafet type spin-flip processes for the ultrafast demagnetization taking place on a time scale of 300 fs.Comment: 12 pages, 3 figures; accepted by Physical Review Letter

    A new doubly discrete analogue of smoke ring flow and the real time simulation of fluid flow

    Full text link
    Modelling incompressible ideal fluids as a finite collection of vortex filaments is important in physics (super-fluidity, models for the onset of turbulence) as well as for numerical algorithms used in computer graphics for the real time simulation of smoke. Here we introduce a time-discrete evolution equation for arbitrary closed polygons in 3-space that is a discretisation of the localised induction approximation of filament motion. This discretisation shares with its continuum limit the property that it is a completely integrable system. We apply this polygon evolution to a significant improvement of the numerical algorithms used in Computer Graphics.Comment: 15 pages, 3 figure

    Equilibrium onions?

    Get PDF
    We demonstrate the possibility of a stable equilibrium multi-lamellar ("onion") phase in pure lamellar systems (no excess solvent) due to a sufficiently negative Gaussian curvature modulus. The onion phase is stabilized by non-linear elastic moduli coupled to a polydisperse size distribution (Apollonian packing) to allow space-filling without appreciable elastic distortion. This model is compared to experiments on copolymer-decorated lamellar surfactant systems, with reasonable qualitative agreement

    Stable crystalline lattices in two-dimensional binary mixtures of dipolar particles

    Full text link
    The phase diagram of binary mixtures of particles interacting via a pair potential of parallel dipoles is computed at zero temperature as a function of composition and the ratio of their magnetic susceptibilities. Using lattice sums, a rich variety of different stable crystalline structures is identified including AmBnA_mB_n structures. [AA (B)(B) particles correspond to large (small) dipolar moments.] Their elementary cells consist of triangular, square, rectangular or rhombic lattices of the AA particles with a basis comprising various structures of AA and BB particles. For small (dipolar) asymmetry there are intermediate AB2AB_2 and A2BA_2B crystals besides the pure AA and BB triangular crystals. These structures are detectable in experiments on granular and colloidal matter.Comment: 6 pages - 2 figs - phase diagram update

    Garside and quadratic normalisation: a survey

    Full text link
    Starting from the seminal example of the greedy normal norm in braid monoids, we analyse the mechanism of the normal form in a Garside monoid and explain how it extends to the more general framework of Garside families. Extending the viewpoint even more, we then consider general quadratic normalisation procedures and characterise Garside normalisation among them.Comment: 30 page
    • …
    corecore