1,692 research outputs found

    NF-κB and its role in checkpoint control

    Get PDF
    Nuclear factor-κB (NF-κB) has been described as one of the most important molecules linking inflammation to cancer. More recently, it has become clear that NF-κB is also involved in the regulation of immune checkpoint expression. Therapeutic approaches targeting immune checkpoint molecules, enabling the immune system to initiate immune responses against tumor cells, constitute a key breakthrough in cancer treatment. This review discusses recent evidence for an association of NF-κB and immune checkpoint expression and examines the therapeutic potential of inhibitors targeting either NF-κB directly or molecules involved in NF-κB regulation in combination with immune checkpoint blockade

    The architecture of Cidec-mediated interfaces between lipid droplets.

    Get PDF
    Lipid droplets (LDs) are intracellular organelles responsible for storing surplus energy as neutral lipids. Their size and number vary enormously. In white adipocytes, LDs can reach 100 μm in diameter, occupying >90% of the cell. Cidec, which is strictly required for the formation of large LDs, is concentrated at interfaces between adjacent LDs and facilitates directional flux of neutral lipids from the smaller to the larger LD. The mechanism of lipid transfer is unclear, in part because the architecture of interfaces between LDs remains elusive. Here we visualize interfaces between LDs by electron cryo-tomography and analyze the kinetics of lipid transfer by quantitative live fluorescence microscopy. We show that transfer occurs through closely apposed monolayers, is slowed down by increasing the distance between the monolayers, and follows exponential kinetics. Our data corroborate the notion that Cidec facilitates pressure-driven transfer of neutral lipids through two "leaky" monolayers between LDs

    Duration of the Electromyographic Silent Period Following the Jaw-Jerk Reflex in Human Subjects

    Full text link
    During voluntary jaw clenching, a sharp tap to the menton of the mandible resulted in a transitory silent period (pause) in the electromyographic activity of the masseter and anterior temporalis muscles. Factors that could influence the duration of the silent period were studied, including direction and magnitude of the stimulus applied by the operator, the amount of muscular effort exerted by the subjects, and varying occlusal vertical dimensions. Decreased isometric muscle force resulted in statistically significant increases in silent period durations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67989/2/10.1177_00220345770560061501.pd

    IRX-2, a Novel Immunotherapeutic, Enhances Functions of Human Dendritic Cells

    Get PDF
    Background: In a recent phase II clinical trial for HNSCC patients, IRX-2, a cell-derived biologic, promoted T-cell infiltration into the tumor and prolonged overall survival. Mechanisms responsible for these IRX-2-mediated effects are unknown. We hypothesized that IRX-2 enhanced tumor antigen-(TA)-specific immunity by up-regulating functions of dendritic cells (DC). Methodology/Principal Findings: Monocyte-derived DC obtained from 18 HNSCC patients and 12 healthy donors were matured using IRX-2 or a mix of TNF-α, IL-1β and IL-6 ("conv. mix"). Multicolor flow cytometry was used to study the DC phenotype and antigen processing machinery (APM) component expression. ELISPOT and cytotoxicity assays were used to evaluate tumor-reactive cytotoxic T lymphocytes (CTL). IL-12p70 and IL-10 production by DC was measured by Luminex® and DC migration toward CCL21 was tested in transwell migration assays. IRX-2-matured DC functions were compared with those of conv. mix-matured DC. IRX-2-matured DC expressed higher levels (p<0.05) of CD11c, CD40, CCR7 as well as LMP2, TAP1, TAP2 and tapasin than conv. mix-matured DC. IRX-2-matured DC migrated significantly better towards CCL21, produced more IL-12p70 and had a higher IL12p70/IL-10 ratio than conv. mix-matured DC (p<0.05 for all). IRX-2-matured DC carried a higher density of tumor antigen-derived peptides, and CTL primed with these DC mediated higher cytotoxicity against tumor targets (p<0.05) compared to the conv. mix-matured DC. Conclusion: Excellent ability of IRX-2 to induce ex vivo DC maturation in HNSCC patients explains, in part, its clinical benefits and emphasizes its utility in ex vivo maturation of DC generated for therapy. © 2013 Schilling et al

    In situ architecture of the ER–mitochondria encounter structure

    Get PDF
    The endoplasmic reticulum and mitochondria are main hubs of eukaryotic membrane biogenesis that rely on lipid exchange via membrane contact sites1,2,3, but the underpinning mechanisms remain poorly understood. In yeast, tethering and lipid transfer between the two organelles is mediated by the endoplasmic reticulum–mitochondria encounter structure (ERMES), a four-subunit complex of unresolved stoichiometry and architecture4,5,6. Here we determined the molecular organization of ERMES within Saccharomyces cerevisiae cells using integrative structural biology by combining quantitative live imaging, cryo-correlative microscopy, subtomogram averaging and molecular modelling. We found that ERMES assembles into approximately 25 discrete bridge-like complexes distributed irregularly across a contact site. Each bridge consists of three synaptotagmin-like mitochondrial lipid binding protein domains oriented in a zig-zag arrangement. Our molecular model of ERMES reveals a pathway for lipids. These findings resolve the in situ supramolecular architecture of a major inter-organelle lipid transfer machinery and provide a basis for the mechanistic understanding of lipid fluxes in eukaryotic cells.<br/

    CD4:CD8 ratio and CD8 cell count and their prognostic relevance for coronary heart disease events and stroke in antiretroviral treated individuals: The Swiss HIV Cohort Study.

    Get PDF
    INTRODUCTION HIV infection leads to a persistent expansion of terminally CD8T cells and CD8T suppressor-cells, a marker of chronic immune activation leading to a low CD4:CD8 ratio that may persist in the presence of potent ART and regained CD4 helper cells. It remains unclear whether a low CD4:CD8 ratio is associated with cardiovascular diseases (CVD). METHODS We conducted an observational cohort study to investigate the association of immune depression and activation as characterized by the proxy of the CD4:CD8 ratio on the hazard of coronary heart disease (CHD) and stroke among treated individuals living with HIV, while accounting for viral load and known risk factors for CVD and exposure to abacavir or protease inhibitors. We used Cox proportional hazard models with time-dependent cumulative and lagged exposures to account for time-evolving risk factors and avoid reverse causality. RESULTS CD4, CD8 and CD4:CD8 immunological markers were not associated with an increased hazard for CHD. CD8 cell count lagged at 12 months above 1000 cells per μl increased the hazard of stroke, after adjusting for socio-demographics, cardiovascular risk factors and exposure to specific types of antiretroviral drugs. CONCLUSIONS This analysis of treated HIV infected individuals within a large cohort with long-term follow-up does not provide evidence for a prognostic role of immune dysregulation regarding CHD. However, increased CD8 cell count may be a moderate risk factor for stroke. Early detection and treatment of HIV-infected individuals are crucial for an optimal immune restoration and a limited CD8 cells expansion

    Circulating exosomes inhibit B cell proliferation and activity

    Get PDF
    (1) Background: Head and neck squamous cell carcinoma (HNSCC) is characterized by a distinctive suppression of the anti-tumor immunity, both locally in the tumor microenvironment (TME) and the periphery. Tumor-derived exosomes mediate this immune suppression by directly suppressing T effector function and by inducing differentiation of regulatory T cells. However, little is known about the effects of exosomes on B cells. (2) Methods: Peripheral B cells from healthy donors and HNSCC patients were isolated and checkpoint receptor expression was analyzed by flow cytometry. Circulating exosomes were isolated from the plasma of HNSCC patients (n = 21) and healthy individuals (n = 10) by mini size-exclusion chromatography. B cells from healthy individuals were co-cultured with isolated exosomes for up to 4 days. Proliferation, viability, surface expression of checkpoint receptors, and intracellular signaling were analyzed in B cells by flow cytometry. (3) Results: Expression of the checkpoint receptors PD-1 and LAG3 was increased on B cells from HNSCC patients. The protein concentration of circulating exosomes was increased in HNSCC patients as compared to healthy donors. Both exosomes from healthy individuals and HNSCC patients inhibited B cell proliferation and survival, in vitro. Surface expression of inhibitory and stimulatory checkpoint receptors on B cells was modulated in co-culture with exosomes. In addition, an inhibitory effect of exosomes on B cell receptor (BCR) signaling was demonstrated in B cells. (4) Conclusions: Plasma-derived exosomes show inhibitory effects on the function of healthy B cells. Interestingly, these inhibitory effects are similar between exosomes from healthy individuals and HNSCC patients, suggesting a physiological B cell inhibitory role of circulating exosomes

    Preparing Arabidopsis thaliana root protoplasts for cryo electron tomography

    Get PDF
    The use of protoplasts in plant biology has become a convenient tool for the application of transient gene expression. This model system has allowed the study of plant responses to biotic and abiotic stresses, protein location and trafficking, cell wall dynamics, and single-cell transcriptomics, among others. Although well-established protocols for isolating protoplasts from different plant tissues are available, they have never been used for studying plant cells using cryo electron microscopy (cryo-EM) and cryo electron tomography (cryo-ET). Here we describe a workflow to prepare root protoplasts from Arabidopsis thaliana plants for cryo-ET. The process includes protoplast isolation and vitrification on EM grids, and cryo-focused ion beam milling (cryo-FIB), with the aim of tilt series acquisition. The whole workflow, from growing the plants to the acquisition of the tilt series, may take a few months. Our protocol provides a novel application to use plant protoplasts as a tool for cryo-ET
    corecore