1,163 research outputs found

    Coupling of a Single Tin-vacancy Center to a Photonic Crystal Cavity in Diamond

    Full text link
    We demonstrate optical coupling between a single tin-vacancy (SnV) center in diamond and a free-standing photonic crystal nanobeam cavity. The cavities are fabricated using quasi-isotropic etching and feature experimentally measured quality factors as high as ~11,000. We investigate the dependence of a single SnV center's emission by controlling the cavity wavelength using a laser-induced gas desorption technique. Under resonance conditions, we observe an intensity enhancement of the SnV emission by a factor of 12 and a 16-fold reduction of the SnV lifetime. Based on the large enhancement of the SnV emission rate inside the cavity, we estimate the Purcell factor for the SnV zero-phonon line to be 37 and the coupling efficiency of the SnV center to the cavity, the beta factor, to be 95%. Our work paves the way for the realization of quantum photonic devices and systems based on efficient photonic interfaces using the SnV color center in diamond

    Процесс фтороаммонийной переработки высокофтористых бериллиевых концентратов

    Get PDF
    В работе приведено научное обоснование способа фтороаммонийной переработки высокофтористого бериллиевого концентрата, предложены технологические режимы переработки бериллиевого концентрата. Исследование технологического процесса и определение режимов, обеспечивающих экономически эффективную переработку концентратов, проводили на специально изготовленной опытной установке. В результате работы создана и апробирована принципиальная схема переработки бериллиевых концентратов, разработано аппаратурное оформление процесса. Приведено технико-экономическое обоснование технологии.The scientific substantiation of the processing of high-fluoride beryllium concentrates by ammonium fluoride is given in graduation thesis. Technological conditions of beryllium concentrate processing are proposed. The research of the technological process and determination of the conditions providing cost-effective processing of concentrates was carried out on a specially manufactured pilot plant. As a result of the work, a basic scheme for the processing of beryllium concentrates was developed and approved, and the hardware design of the process was developed. The feasibility study of technology is shown

    Modelling the unfolding pathway of biomolecules: theoretical approach and experimental prospect

    Full text link
    We analyse the unfolding pathway of biomolecules comprising several independent modules in pulling experiments. In a recently proposed model, a critical velocity vcv_{c} has been predicted, such that for pulling speeds v>vcv>v_{c} it is the module at the pulled end that opens first, whereas for v<vcv<v_{c} it is the weakest. Here, we introduce a variant of the model that is closer to the experimental setup, and discuss the robustness of the emergence of the critical velocity and of its dependence on the model parameters. We also propose a possible experiment to test the theoretical predictions of the model, which seems feasible with state-of-art molecular engineering techniques.Comment: Accepted contribution for the Springer Book "Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications" (proceedings of the BIRS CMM16 Workshop held in Banff, Canada, August 2016), 16 pages, 6 figure

    The effect of birth order on length of hospitalization for pediatric traumatic brain injury: an analysis of the 1987 Finnish birth cohort

    Get PDF
    Purpose This study examines the relationship between birth order and length of hospitalization due to pediatric traumatic brain injury (TBI). Methods We prospectively followed 59,469 Finnish newborns from 1987 until age 18 years. Data on first diagnosis of TBI was recorded within the 1987 Finnish Birth Cohort (FBC). Hospitalization period was divided into two categories: 2 days or less and more than 2 days. The latter was considered in this study as longer hospitalization. Results Compared with first born siblings, later born siblings had an increased risk of a longer hospitalization for TBI (12.7% of fourth or higher born birth children diagnosed with TBI were hospitalized for 2 or more days, 11.3% of first born, 10.4% of third born and 9.0% of second born). Fourth or higher born children were more likely to experience a repeat TBI; 13.4% of fourth or higher born children diagnosed with TBI had 2-3 TBIs during the study period compared to 9% of third born, 7.8% of second born and 8.8% of the first born. Injuries in the traffic environment and falls were the most common contributors to pediatric TBI and occurred most frequently in the fourth or higher birth category; 29.3% of TBIs among fourth or higher birth order were due to transport accidents and 21% were due to falls. Conclusions This study revealed a significant increase in risk for longer hospitalization due to TBI among later born children within the same sibling group. The study provides epidemiological evidence on birth order as it relates to TBI, and its potential to help to explain some of the statistical variability in pediatric TBI hospitalization over time in this population

    Intercomparison of low- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO2, CH4, and CO

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is the baseline ground-based network of instruments that record solar absorption spectra from which accurate and precise column-averaged dry-air mole fractions of CO2_{2} (XCO2_{2}), CH4_{4} (XCH4_{4}), CO (XCO), and other gases are retrieved. The TCCON data have been widely used for carbon cycle science and validation of satellites measuring greenhouse gas concentrations globally. The number of stations in the network (currently about 25) is limited and has a very uneven geographical coverage: the stations in the Northern Hemisphere are distributed mostly in North America, Europe, and Japan, and only 20 % of the stations are located in the Southern Hemisphere, leaving gaps in the global coverage. A denser distribution of ground-based solar absorption measurements is needed to improve the representativeness of the measurement data for various atmospheric conditions (humid, dry, polluted, presence of aerosol), various surface conditions such as high albedo (>0.4) and very low albedo, and a larger latitudinal distribution. More stations in the Southern Hemisphere are also needed, but a further expansion of the network is limited by its costs and logistical requirements. For this reason, several groups are investigating supplemental portable low-cost instruments. The European Space Agency (ESA) funded campaign Fiducial Reference Measurements for Ground-Based Infrared Greenhouse Gas Observations (FRM4GHG) at the Sodankylä TCCON site in northern Finland aims to characterise the assessment of several low-cost portable instruments for precise solar absorption measurements of XCO2_{2}, XCH4_{4}, and XCO. The test instruments under investigation are three Fourier transform spectrometers (FTSs): a Bruker EM27/SUN, a Bruker IRcube, and a Bruker Vertex70, as well as a laser heterodyne spectroradiometer (LHR) developed by the UK Rutherford Appleton Laboratory. All four remote sensing instruments performed measurements simultaneously next to the reference TCCON instrument, a Bruker IFS 125HR, for a full year in 2017. The TCCON FTS was operated in its normal high-resolution mode (TCCON data set) and in a special low-resolution mode (HR125LR data set), similar to the portable spectrometers. The remote sensing measurements are complemented by regular AirCore launches performed from the same site. They provide in situ vertical profiles of the target gas concentrations as auxiliary reference data for the column retrievals, which are traceable to the WMO SI standards. The reference measurements performed with the Bruker IFS 125HR were found to be affected by non-linearity of the indium gallium arsenide (InGaAs) detector. Therefore, a non-linearity correction of the 125HR data was performed for the whole campaign period and compared with the test instruments and AirCore. The non-linearity-corrected data (TCCONmod data set) show a better match with the test instruments and AirCore data compared to the non-corrected reference data. The time series, the bias relative to the reference instrument and its scatter, and the seasonal and the day-to-day variations of the target gases are shown and discussed. The comparisons with the HR125LR data set gave a useful analysis of the resolution-dependent effects on the target gas retrieval. The solar zenith angle dependence of the retrievals is shown and discussed. The intercomparison results show that the LHR data have a large scatter and biases with a strong diurnal variation relative to the TCCON and other FTS instruments. The LHR is a new instrument under development, and these biases are currently being investigated and addressed. The campaign helped to characterise and identify instrumental biases and possibly retrieval biases, which are currently under investigation. Further improvements of the instrument are ongoing. The EM27/SUN, the IRcube, the modified Vertex70, and the HR125LR provided stable and precise measurements of the target gases during the campaign with quantified small biases. The bias dependence on the humidity along the measurement line of sight has been investigated and no dependence was found. These three portable low-resolution FTS instruments are suitable to be used for campaign deployment or long-term measurements from any site and offer the ability to complement the TCCON and expand the global coverage of ground-based reference measurements of the target gases

    Intercomparison of low- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO2, CH4, and CO

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is the baseline ground-based network of instruments that record solar absorption spectra from which accurate and precise column-averaged dry-air mole fractions of CO2_{2} (XCO2_{2}), CH4_{4} (XCH4_{4}), CO (XCO), and other gases are retrieved. The TCCON data have been widely used for carbon cycle science and validation of satellites measuring greenhouse gas concentrations globally. The number of stations in the network (currently about 25) is limited and has a very uneven geographical coverage: the stations in the Northern Hemisphere are distributed mostly in North America, Europe, and Japan, and only 20 % of the stations are located in the Southern Hemisphere, leaving gaps in the global coverage. A denser distribution of ground-based solar absorption measurements is needed to improve the representativeness of the measurement data for various atmospheric conditions (humid, dry, polluted, presence of aerosol), various surface conditions such as high albedo (>0.4) and very low albedo, and a larger latitudinal distribution. More stations in the Southern Hemisphere are also needed, but a further expansion of the network is limited by its costs and logistical requirements. For this reason, several groups are investigating supplemental portable low-cost instruments. The European Space Agency (ESA) funded campaign Fiducial Reference Measurements for Ground-Based Infrared Greenhouse Gas Observations (FRM4GHG) at the Sodankylä TCCON site in northern Finland aims to characterise the assessment of several low-cost portable instruments for precise solar absorption measurements of XCO2_{2}, XCH4_{4}, and XCO. The test instruments under investigation are three Fourier transform spectrometers (FTSs): a Bruker EM27/SUN, a Bruker IRcube, and a Bruker Vertex70, as well as a laser heterodyne spectroradiometer (LHR) developed by the UK Rutherford Appleton Laboratory. All four remote sensing instruments performed measurements simultaneously next to the reference TCCON instrument, a Bruker IFS 125HR, for a full year in 2017. The TCCON FTS was operated in its normal high-resolution mode (TCCON data set) and in a special low-resolution mode (HR125LR data set), similar to the portable spectrometers. The remote sensing measurements are complemented by regular AirCore launches performed from the same site. They provide in situ vertical profiles of the target gas concentrations as auxiliary reference data for the column retrievals, which are traceable to the WMO SI standards. The reference measurements performed with the Bruker IFS 125HR were found to be affected by non-linearity of the indium gallium arsenide (InGaAs) detector. Therefore, a non-linearity correction of the 125HR data was performed for the whole campaign period and compared with the test instruments and AirCore. The non-linearity-corrected data (TCCONmod data set) show a better match with the test instruments and AirCore data compared to the non-corrected reference data. The time series, the bias relative to the reference instrument and its scatter, and the seasonal and the day-to-day variations of the target gases are shown and discussed. The comparisons with the HR125LR data set gave a useful analysis of the resolution-dependent effects on the target gas retrieval. The solar zenith angle dependence of the retrievals is shown and discussed. The intercomparison results show that the LHR data have a large scatter and biases with a strong diurnal variation relative to the TCCON and other FTS instruments. The LHR is a new instrument under development, and these biases are currently being investigated and addressed. The campaign helped to characterise and identify instrumental biases and possibly retrieval biases, which are currently under investigation. Further improvements of the instrument are ongoing. The EM27/SUN, the IRcube, the modified Vertex70, and the HR125LR provided stable and precise measurements of the target gases during the campaign with quantified small biases. The bias dependence on the humidity along the measurement line of sight has been investigated and no dependence was found. These three portable low-resolution FTS instruments are suitable to be used for campaign deployment or long-term measurements from any site and offer the ability to complement the TCCON and expand the global coverage of ground-based reference measurements of the target gases

    Viral and Cell Cycle–Regulated Kinases in Cytomegalovirus-Induced Pseudomitosis and Replication

    Get PDF
    A process of pseudomitosis occurs during human cytomegalovirus infection that appears similar to cellular mitosis but involves the formation of multiple spindle poles, abnormal condensation, and mislocalization of chromosomal DNA. The relationship of this process to viral replication and cell cycle regulation during infection has been poorly understood. Pseudomitosis consistently peaks at late times of infection in all viral strains examined but at overall highest frequencies (30% to 35% of cells) using one common laboratory strain variant (AD169varATCC). Cyclin-dependent kinase 1 (Cdk1) plays a crucial role in pseudomitosis, mirroring its role in conventional mitosis. Dominant negative Cdk1 inhibits and wild-type Cdk1 stimulates this process; however, viral yields remain the same regardless of pseudomitosis levels. Broad inhibition of cell cycle−regulated kinases (Cdk1/Cdk2/Cdk5/Cdk9) with indirubin-3′-monoxime substantially decreases viral yields and synergizes with the viral UL97 kinase inhibitor, maribavir. Thus, Cdk1 is necessary and sufficient to drive pseudomitosis, whereas a combination of viral and cell cycle−regulated kinases is important during viral replication

    Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes

    Get PDF
    Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained
    corecore