858 research outputs found

    Up-Net: a generic deep learning-based time stepper for parameterized spatio-temporal dynamics

    Get PDF
    In the age of big data availability, data-driven techniques have been proposed recently to compute the time evolution of spatio-temporal dynamics. Depending on the required a priori knowledge about the underlying processes, a spectrum of black-box end-to-end learning approaches, physics-informed neural networks, and data-informed discrepancy modeling approaches can be identified. In this work, we propose a purely data-driven approach that uses fully convolutional neural networks to learn spatio-temporal dynamics directly from parameterized datasets of linear spatio-temporal processes. The parameterization allows for data fusion of field quantities, domain shapes, and boundary conditions in the proposed Up-Net architecture. Multi-domain Up-Net models, therefore, can generalize to different scenes, initial conditions, domain shapes, and domain sizes without requiring re-training or physical priors. Numerical experiments conducted on a universal and two-dimensional wave equation and the transient heat equation for validation purposes show that the proposed Up-Net outperforms classical U-Net and conventional encoder–decoder architectures of the same complexity. Owing to the scene parameterization, the Up-Net models learn to predict refraction and reflections arising from domain inhomogeneities and boundaries. Generalization properties of the model outside the physical training parameter distributions and for unseen domain shapes are analyzed. The deep learning flow map models are employed for long-term predictions in a recursive time-stepping scheme, indicating the potential for data-driven forecasting tasks. This work is accompanied by an open-sourced code

    A randomized phase II study of radiation induced immune boost in operable non-small cell lung cancer (RadImmune trial)

    Get PDF
    Background: Lung cancer is the leading cause of cancer deaths worldwide. Surgery, radiotherapy at conventional and high dose and chemotherapy are the mainstay for lung cancer treatment. Insufficient migration and activation of tumour specific effector T cells seem to be important reasons for inadequate host anti-tumour immune response. Ionizing radiation can induce a variety of immune responses. The goal of this randomized trial is to assess if a preoperative single fraction low dose radiation is able to improve anti-tumour immune response in operable early stage lung cancer. Methods/Design: This trial has been designed as an investigator-initiated, prospective, randomized, 2-armed phase II trial. Patients who are candidates for elective resection of early stage non-small cell lung cancer will be randomized into 2 arms. A total of 36 patients will be enrolled. The patients receive either 2 Gy or no radiation prescribed to their primary tumour. Radiation will be delivered by external beam radiotherapy using 3D radiotherapy or intensity-modulated radiation technique (IMRT) 7 days prior to surgical resection. The primary objective is to compare CD8+ T cell counts detected by immunohistochemistry in resected tumours following preoperative radiotherapy versus no radiotherapy. Secondary objectives include the association between CD8+ T cell counts and progression free survival, the correlation of CD8+ T cell counts quantified by immunohistochemistry and flow cytometry, local tumour control and recurrence patterns, survival, radiogenic treatment toxicity and postoperative morbidity and mortality. Further, frequencies of tumour reactive T cells in blood and bone marrow as well as whole blood cell transcriptomics and plasma-proteomics will be correlated with clinical outcome. Discussion: This unique intervention combining preoperative low dose radiation and surgical removal of early stage non-small cell lung cancer is designed to address the problem of inadequate host anti-tumour immune response. If successful, this study may affect the role of radiotherapy in lung cancer treatment. Trial registration: NCT02319408; Registration: December 29, 2014

    Simultaneous computed tomography-guided biopsy and radiofrequency ablation of solitary pulmonary malignancy in high-risk patients

    Get PDF
    Background: In recent years experience has been accumulated in percutaneous radiofrequency ablation (RFA) of lung malignancies in nonsurgical patients. Objectives: In this study, we retrospectively evaluated a simultaneous diagnostic and therapeutic approach including CT-guided biopsy followed immediately by RFA of solitary malignant pulmonary lesions. Methods: CT-guided transthoracic core needle biopsy of solitary pulmonary lesions suspicious for malignancy was performed and histology was proven based on immediate frozen sections. RFA probes were placed into the pulmonary tumors under CT guidance and the ablation was performed subsequently. The procedure-related morbidity was analyzed. Follow-up included a CT scan and pulmonary function parameters. Results: A total of 33 CT-guided biopsies and subsequent RFA within a single procedure were performed. Morbidity of CT-guided biopsy included pulmonary hemorrhage (24%) and a mild pneumothorax (12%) without need for further interventions. The RFA procedure was not aggravated by the previous biopsy. The rate of pneumothorax requiring chest tube following RFA was 21%. Local tumor control was achieved in 77% with a median follow-up of 12 months. The morbidity of the CT-guided biopsy had no statistical impact on the local recurrence rate. Conclusions: The simultaneous diagnostic and therapeutic approach including CT-guided biopsy followed immediately by RFA of solitary malignant pulmonary lesions is a safe procedure. The potential of this combined approach is to avoid unnecessary therapies and to perform adequate therapies based on histology. Taking the local control rate into account, this approach should only be performed in those patients who are unable to undergo or who refuse surgery. Copyright (C) 2012 S. Karger AG, Base

    Evaluation of HER2 expression in urothelial carcinoma cells as a biomarker for circulating tumor cells

    Get PDF
    Background Detection of circulating tumor cells (CTC) by techniques based on epithelial cell adhesion molecule (EpCAM) is suboptimal in urothelial carcinoma (UC). As HER2 is thought to be broadly expressed in UC, we explored its utility for CTC detection. Methods HER2 and EpCAM expression was analyzed in 18 UC cell lines (UCCs) by qRT-PCR, western blot and fluorescence-activated cell scanning (FACS) and compared to the strongly HER2-expressing breast cancer cell line SKBR3 and other controls. HER2 expression in UC patient tissues was measured by qRT PCR and correlated with data on survival and risk for metastasis. UCCs with high EpCAM and variable HER2 expression were used for spike-in experiments in the CellSearch system. Twenty-one blood samples from 13 metastatic UC patients were analyzed for HER2-positive CTCs with CellSearch. Results HER2 mRNA and protein were broadly expressed in UCC, with some heterogeneity, but at least 10-fold lower than in the HER-2+ SKBR3 cells. Variations were unrelated to cellular phenotype or clinicopathological characteristics. EpCAM expression was essentially restricted to UCCs with epitheloid phenotypes. Heterogeneity of EpCAM and HER2 expression was observed also in spike-in experiments. The 7 of 21 blood samples from 6 of 13 patients were enumerated as CTC positive via EpCAM, but only one sample stained weakly positive (1+) for HER2. Conclusions Detection rate of CTCs by EpCAM in UC is poor, even in metastatic patients. Because of its widespread expression, particularly in patients with high risk of metastasis, detection of HER2 could improve identification of UC CTCs, which is why combined detection using antibodies for EpCAM and HER2 may be beneficial

    Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: a prospective, observational single-center study

    Get PDF
    Background: Efective antimicrobial treatment is key to reduce mortality associated with bacterial sepsis in patients on intensive care units (ICUs). Dose adjustments are often necessary to account for pathophysiological changes or renal replacement therapy. Extracorporeal membrane oxygenation (ECMO) is increasingly being used for the treatment of respiratory and/or cardiac failure. However, it remains unclear whether dose adjustments are necessary to avoid subtherapeutic drug levels in septic patients on ECMO support. Here, we aimed to evaluate and comparatively assess serum concentrations of continuously applied antibiotics in intensive care patients being treated with and without ECMO. Methods: Between October 2018 and December 2019, we prospectively enrolled patients on a pneumological ICU in southwest Germany who received antibiotic treatment with piperacillin/tazobactam, ceftazidime, meropenem, or linezolid. All antibiotics were applied using continuous infusion, and therapeutic drug monitoring of serum concentrations (expressed as mg/L) was carried out using high-performance liquid chromatography. Target concentrations were defned as fourfold above the minimal inhibitory concentration (MIC) of susceptible bacterial isolates, according to EUCAST breakpoints
    • …
    corecore