
Computational Mechanics (2023) 71:1227–1249
https://doi.org/10.1007/s00466-023-02295-x

ORIG INAL PAPER

Up-Net: a generic deep learning-based time stepper for parameterized
spatio-temporal dynamics

Merten Stender1,2 · Jakob Ohlsen2 · Hendrik Geisler3 · Amin Chabchoub6,7,8 · Norbert Hoffmann2,4 ·
Alexander Schlaefer5

Received: 2 September 2022 / Accepted: 17 February 2023 / Published online: 24 March 2023
© The Author(s) 2023

Abstract
In the age of big data availability, data-driven techniques have been proposed recently to compute the time evolution of spatio-
temporal dynamics. Depending on the required a priori knowledge about the underlying processes, a spectrum of black-box
end-to-end learning approaches, physics-informed neural networks, and data-informed discrepancy modeling approaches can
be identified. In this work, we propose a purely data-driven approach that uses fully convolutional neural networks to learn
spatio-temporal dynamics directly from parameterized datasets of linear spatio-temporal processes. The parameterization
allows for data fusion of field quantities, domain shapes, and boundary conditions in the proposed Up-Net architecture.
Multi-domain Up-Net models, therefore, can generalize to different scenes, initial conditions, domain shapes, and domain
sizes without requiring re-training or physical priors. Numerical experiments conducted on a universal and two-dimensional
wave equation and the transient heat equation for validation purposes show that the proposed Up-Net outperforms classical
U-Net and conventional encoder–decoder architectures of the same complexity. Owing to the scene parameterization, the Up-
Net models learn to predict refraction and reflections arising from domain inhomogeneities and boundaries. Generalization
properties of the model outside the physical training parameter distributions and for unseen domain shapes are analyzed. The
deep learning flow map models are employed for long-term predictions in a recursive time-stepping scheme, indicating the
potential for data-driven forecasting tasks. This work is accompanied by an open-sourced code.

Keywords Partial differential equations · Machine learning · Wave propagation · Representation learning · Time integration ·
Sensor data fusion

Merten Stender and JakobOhlsen have contributed equally to this work.

B Merten Stender
merten.stender@tu-berlin.de
https://www.tu.berlin/cpsme

B Jakob Ohlsen
jakob.ohlsen@tuhh.de

1 Cyber-Physical Systems in Mechanical Engineering,
Technische Universität Berlin, Berlin, Germany

2 Hamburg University of Technology, Dynamics Group,
Hamburg, Germany

3 Institute of Continuum Mechanics, Leibniz University
Hanover, Hanover, Germany

4 Department of Mechanical Engineering, Imperial College
London, London, UK

5 Institute of Medical Technology and Intelligent Systems,
Hamburg University of Technology, Hamburg, Germany

1 Introduction

Numerical solutions schemes for spatio-temporal problems
have matured over past decades, enabling highly accu-
rate simulations of complex dynamics and geometries, e.g.
numerical wind tunnel testing, wave propagation in solids,
weather predictions, and meteorology [1,2]. Major computa-
tional speedups in numerical simulations have been obtained
throughmassive parallelization and utilization ofGPUs, such
as in Lattice-Boltzmann methods [3]. However, there remain
complex cases that require timely predictions of the future

6 Hakubi Center for Advanced Research, Kyoto University,
Kyoto, Japan

7 Disaster Prevention Research Institute, Kyoto University,
Kyoto, Japan

8 Centre for Wind, Waves and Water, The University of
Sydney, Sydney, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-023-02295-x&domain=pdf
http://orcid.org/0000-0002-0888-8206

1228 Computational Mechanics (2023) 71:1227–1249

state, such as accurate weather predictions, or short-time
wave field predictions for seakeeping operations at offshore
wind turbines. Despite algorithmic advances, such cases can
be still computationally too demanding for timely predictions
[4] and thus, hinder the development of several applications
and technology with direct potential for societal benefits. In
different scenarios, some problem needs to be evaluated for
a large number of minor parameter variations, e.g. inside
optimization loops, where solving the underlying equations
becomes computationally infeasible. Instead, it would be
desirable to utilizemethods thatmake implicit use of the joint
structure of all the individual problems. Moreover, there are
situations for which the underlying governing equations or
their parameterization are uncertain or unknown, such as seis-
mic wave propagation [5], shear waves in inhomogeneous
tissues [6,7], or the spatio-temporal evolution of epidemic
outbreaks [8]. Here, a solely data-drivenmethodwould allow
us to learn from raw observations and make efficient future
state predictions without explicitly modeling the underlying
processes as done in standard data assimilation schemes.

This work proposes a purely data-driven deep learning-
based time stepper for spatio-temporal dynamics inspired
by recent advances in computer vision [9,10]. Domain state
snapshots at preceding time instances are fed to a U-Net-
type [10] convolutional network to infer the dynamics at the
next time step, i.e. to build a deep learning flow map. To
consider parameterized problems and multi-domain inputs,
a novel architecture denoted as Up-Net is proposed that fea-
tures multiple network encoding paths for fusing multiple
data sources. Thereby, domain geometries, boundary condi-
tions, and spatial parameter distributions, such as material
properties, can be considered explicitly by feeding them into
the p different encoder paths. The fully convolutional archi-
tecture allows for inference at variable domain dimensions
without requiring model re-training if domain sizes differ
across prediction samples. Compared to recent physics-
informed learning approaches [11–13], no a priori knowledge
of mathematical structures underlying the problem at hand
is required. This property renders the Up-net particularly
promising for experimental data, where knowledge about
governing equations and their parameters may only partly
be available. The robustness and performance of the Up-Net
approach are demonstrated for typical cases of unsteady heat
flow and wave dynamics in complex geometries. The gener-
alization behavior for out-of-distribution physical parameters
and different domain shapes are analyzed at the example of
dedicated validation cases.

This work is structured as follows: Sect. 2 gives a short
review of current approaches in the field of data-driven pre-
diction for spatio-temporal dynamical systems.Theproposed
Up-Net method and the recursive time stepping scheme are
introduced in Sect. 3. Several numerical experiments are pre-
sented in Sect. 4. The complete source code for the project

and multimedia visualizations are made available at https://
github.com/TUHH-DYN/DeepStep under the GNUGeneral
Public License v3.0. The results presented in this work are
obtained by using version 1.0.0 of the source code [14].

2 State-of-the-art and related work

Classical numerical schemes for time-stepping of dynami-
cal processes are often based on Taylor series expansions for
approximating temporal and spatial derivatives of governing
equations. The mathematical description of the underlying
physics is completely known, and a system’s state at some
future time instance t + �t is derived from the preceding
states using implicit or explicit methods such as Runge–
Kutta-type integrators, for which convergence properties,
stability conditions, and error estimates are available. When
applied to partial differential equations (PDEs), computa-
tional costs arise (i) from the massive number of states
resulting from the spatial discretization (easily reaching mil-
lions of cells for fluid systems), (ii) from highly nonlinear
relations between those states, and (iii) from the wide range
of time and length scales to be resolved by the simulation.

Following the advances in the fields of machine learning
(ML), physics-informed neural networks (PINNs) [15–17]
have been proposed to overcome some of the computational
challenges in classical numerical dynamics, solve inverse
problems, and enable fast inference for predicting future
states. Weakly-supervised PINNs aim at strongly regular-
izing universal function approximators [18] to physically
consistent relations between sets of input features and tar-
get quantities utilizing governing equations, hence injecting
domain expertise into black-box learning techniques. Meth-
ods for inferring symbolic differential equations from data,
i.e. solving the inverse problem, have been proposed using
sparse regression [19,20], compressive sensing [21], and
Koopman analysis [22].Most of thesemethods require rather
strong assumptions and a priori knowledge of the underlying
mathematical structure and focus on parametric identifica-
tions [23]. Once identified, the system descriptions can be
used for time-stepping a set of initial conditions into the
future [24], either using ML techniques or classical numeri-
cal schemes.

Purely data-driven approaches without any physical pri-
ors span the range of solving steady-state [25–29] cases
and time-stepping dynamic cases [13,20,30–33]. For exam-
ple, Thuerey et al. [27] derived the associated pressure field
from a velocity field around an airfoil, thereby providing a
static solution for the 2D Reynolds-Averaged Navier–Stokes
equations. Farimani et al. [25] proposed an adversarial train-
ing approach to infer static solutions for two-dimensional
physics problems, such as steady-state heat diffusion and
incompressible fluid flow, from observations without priors

123

https://github.com/TUHH-DYN/DeepStep
https://github.com/TUHH-DYN/DeepStep

Computational Mechanics (2023) 71:1227–1249 1229

on the underlying physical process and for arbitrary bound-
ary conditions. Guo et al. [31] compute the non-uniform
steady laminar flow around 2D or 3D objects using convo-
lutional neural networks. For ordinary differential equations
(ODEs), data-driven time integration schemes [13,20] often
couple priorly learned flow maps into classical multi-step
integration schemes. Data-driven time steppers for PDEs
tend to align with computer vision techniques, such as image
translation, owing to the high dimensionality of the prob-
lems [33]. For example, [34] solve temporal evolutions of
3D fluid flows through deep convolutional-recurrent neural
networks and report computational speedups of two orders
of magnitudes compared to conventional numerical solvers.
Other approaches propose to learnmulti-scale flowmaps fol-
lowing the ideas of para-real time stepping [35], or replace
compute-intensive parts of PDE solvers with convolutional
neural networks [33,36].

Despite many promising results and various research
directions, one may identify four conceptual limitations
to most of the current data-driven time-stepping methods
for spatio-temporal dynamics regarding their applicability,
generality, and generalization abilities for different compu-
tational scenes:

1. Physical priors A class of methods [15–17] requires
rather exact priors, such as a mathematical formulation
of underlying principles, or knowledge of the problem
parameterization in the form of boundary conditions or
material models. While enabling small-data capability
and consistency with physics, these priors may exclude
some cases, such as waves and deformations in tissues
or soils, with partly unknown governing equations and
highly inhomogeneous material properties that cannot be
described analytically.

2. Scene parameterization Other classes of methods are
built for very specific scenes [25–27,37], such as laminar
flow around an airfoil.Whenever the scene is altered, e.g.
changing the air’s density, the airfoil’s shape, or location
in the domain, re-training the model is required because
the scene information is not explicitly considered in the
model. Very limited practical generalization properties
may result from these kinds of modeling approaches.
Ideally, a well-generalizing model trained on airfoil flow
samples would be able to predict the flow around a cylin-
der without being re-trained.

3. Finite dimensionsWhenever perceptrons, recurrent neu-
rons, or other non-convolutional building blocks define
the machine learner [25,27], the geometric resolution
and shape of the computational domain are fixed per
definition, e.g. through the number of neurons in the
input and output layers. Only fully-convolutional neural
(FCN) architectures can generalize to arbitrarily sized
field inputs and outputs, and can thereby encode trans-

lational or rotational invariance through representation
learning. As a result, an FCN model can be trained and
deployed on arrays of different sizes and aspect ratios
without any complicated (or lossy) data pre-processing
steps.

4. Simplifications Numerical computations and physics-
informed learning approaches, in many cases, rely on
several simplifications (simplifiedmodels, linearizations,
symmetries, etc.). Their choice is a trade-off between
reduced computational cost, accuracy, or solution com-
plexity and tends to require a lot of problem-specific
expertise.

Themaindifficulty related topurely data-driven approaches,
such as the one proposed in this work, is to obtain locally
highly accurate results, i.e. amplitudes, phases, andgradients,
which fit into the overall bigger picture, e.g. energy conser-
vation throughout the complete domain. These spatial and
temporal multi-scale requirements call for neural network
architectures that inherently encode multi-resolution predic-
tion stages, such as a U-Net [10]. Our novel multi-path data
fusion Up-Net architecture addresses the aforementioned
limitations and aims at a generic methodology that can be
customized to specific cases at the cost of limited physics
integration and larger data requirements. An FCN architec-
ture ensures generalization to differently sized computational
domains, translational and rotational invariance, as well as
explicit consideration of spatial and temporal neighborhood
relationships in direct analogy with classical numerical dif-
ferentiation schemes. For a generic parameterization of the
problem, we propose to adapt the U-Net architecture fea-
turing a single encoder path, and instead connect multiple
encoder paths, thereby making scene parameterization pos-
sible through data fusion. The Up-Net can be trained to learn
a flow map by advancing a dynamic field quantity one time
step into the future and ensuring the arrival at time-stepping
based on raw observations of parameterized spatio-temporal
processes.

3 Methodology

The proposedmethodology, as schematically shown inFig. 1,
is composed of two integral parts: first, a flow map is assim-
ilated by a Up-Net deep learning model that advances the
current state of the dynamical system one time step into the
future. We highlight that the model is designed for fusing
multivariate data inputs at multi-scale spatial resolutions.
Second, the flow mapping model is embedded into a sim-
plistic recursive time stepping scheme allowing for making
long-term predictions from an initial state. The physics of
the problem at hand binds the two components together,
e.g. by requiring a specific time increment given the spa-

123

1230 Computational Mechanics (2023) 71:1227–1249

tial resolution of the data fed into the flow mapper. However,
individual aspects of the two parts can be optimized indepen-
dently, thereby leaving space for future work building on the
results presented here.

3.1 Encoder–decoder model architecture

The convolutional network is set up to propagate parameter-
ized field variables one step in time. Particularly, the network
architecture can be regarded as an adaptation of the U-Net
architecture [10]. We will therefore shortly revisit the U-Net
architecture first, and then extend it to the proposed Up-Net
architecture. The original U-Net is built on a fully convo-
lutional [38] feedforward encoder–decoder model with skip
connections between the encoder and the decoder pathsPenc,
Pdec respectively. The original U-Net is composed of con-
secutive convolution and max-pooling layers acting on the
input data, i.e. Vi = conv(Vi−1), V = conv(conv(. . . (X)))

in the encoding path. Each convolution layer i reduces the
spatial resolution of the input X , thereby extracting repre-
sentative features Vi at different spatial resolutions i . The
decoding path is a series of up-convolution layers, i.e. Yi =
upconv(Yi−1), Y = upconv(upconv(. . . (V))) that increase
the spatial resolution of the smallest feature map V back
to the output Y of original input size. The compression and
inflation actions represent a simple encoder–decoder struc-
ture typically used for feature extraction, noise filtering and
other applications. The central aspect of the U-Net is to
fuse feature maps Vi from each stage in the encoder path
into the same level Yi of the decoder path, thereby allowing
information to escape the compression action and directly
link with the high-resolution stages in the decoder. Thereby,
small but important features of the input can propagate into
the model output without getting lost during compression.
Considering only a single encoder in Fig. 1, for example
only the blue-colored layers, represents a classical U-Net.
The encoder path for analysis and contraction enables the
creation of higher-level representations in the form of multi-
scale feature maps, while the symmetric decoder path for
synthesis and expansion samples up those abstractions to
re-obtain the original image size resolution at the output.1

The skip connections combine feature maps from the encod-
ing layers with feature maps from decoding layers of the
same resolution, allowing essential fine-resolution details to
be propagated into the network’s output layer. The encoder
and decoder path are symmetric in terms of their spatial res-
olution and have k stages. The network is designed such that
successive stages enlarge the receptive field (at lower spatial
resolution) and increase the number of feature channels. The

1 If unpadded convolutions are utilized, the feature map dimension
is smaller than the input dimension and may require adequate post-
processing in the skip connections and at the output layer.

data flow through the last stage, i.e. the network’s bottleneck,
represents the semantic pathway, i.e. requiring the network to
learn the scene on global scale. On the contrary, the data flow
through skip connections represents the geometric pathway
which injects geometric precision into the decoding path and
thereby increases the level of details in the decoder feature
maps. U-Net-based approaches to spatio-temporal processes
have been studied earlier, such as by Farimani et al. [25] and
Thuerey et al. [27]. Fotaidis et al. [39] employed U-Nets and
convolutional recurrent networks for surface wave predic-
tions, Sharma et al. [26] computed the steady-state solution
of the heat equation using a U-Net, while de Bézenac et al.
[40] applied a U-Net for sea surface temperature predictions.
As this work studies linear PDEs, it is important to note that
U-Net-typemethods have also been used for nonlinear PDEs,
such as [25,27,29] for the Navier–Stokes equations. Most
existing approaches however are limited in (i) their capa-
bilities to fusing multiple data sources and (ii) at the same
time employ the final models as a flowmap for time stepping
applications.

3.2 Up-Net: data fusion throughmulti-domain
inputs

We propose to make use of multiple input encoding paths,
which jointly link to a single output decoding path. The
Up-Net results from creating p different encoder paths for
different input fields and connecting them through skip con-
nections at each stage to the decoder path. Figure1 depicts
a schematic of the proposed Up-Net architecture for p = 3
paths and k = 3 stages. A U3-Net is built on the example
of taking field variables U, the domain geometry in G, and
a spatial domain material distribution C as input. Naturally,
this architecture can be adapted to more encoding paths at
the cost of more model parameters θ . Even though it would
be possible to stack all different input fields into a single
tensor and feed it through a conventional U-Net architec-
ture, our results indicate that the generation of separate paths
for different field quantities can significantly improve the
model precision at the same number ofmodel parameters, see
results in Sect. 4. The core objective for taking qualitatively
different input fields into account is amajor increase of gener-
alization capabilities of the Up-Net compared to the classical
U-Net. Following the review of related work presented ear-
lier, some current U-Net approaches for parametric PDE
applications tend to lack the ability to generalize different
scene configurations, i.e. other domain shapes and domain
parameterizations. Other related methods do not build on a
fully convolutional structure, and are thereby strongly limited
to a single spatial resolution.Hence, these approaches require
model retraining once predictions are required for a different
scene. As the Up-Net explicitly takes that parameterization
as input, our work shows that this type of fully convolutional

123

Computational Mechanics (2023) 71:1227–1249 1231

Fig. 1 Schematic of the proposedUp-Net flowmap architecture (p = 3
encoder paths, k = 3 stages) embedded into a self-feeding loop for time
stepping a set of initial field states into the future. Multiple encoder

paths feed different input data sources to the network for data fusion,
hence enabling generalization of the time stepper to different domain
geometries and domain parameterizations without requiring re-training

neural architecture can be well-generalized to new scenes.
The additional cost for generalization capabilities lies in the
requirement for larger training data spanning various scene
parameterizations, thus resulting in longer model training.

3.3 Up-Net design considerations

The network’s prediction performance depends on a plethora
of model hyperparameters and architecture choices. In the
course of this work, various studies have suggested that there
are four crucial ingredients to designing and training an effi-
cient Up-Net time stepper: the selection of the loss function,
data normalization, conscious treatment of convolution oper-
ations, and consideration of boundary conditions. We use a
domain-adaptive loss function, i.e. the loss is evaluated only
inside the physical domain � based on the input domain
mask G. Sample-wise data normalization, e.g. limiting field
variables to a range of [0, 1], is found be a crucial ingre-
dient for accelerating the training process, at the same time
resulting in weight regularization. However, as the network’s
kernels are enforced to learn amplitude-independent features,
i.e. gradients, specific nonlinear physical process will require
a different kind of normalization. In situations where a direct
normalization per sample is not possible, e.g. when non-
linearities govern the dynamical process, we found that a
global re-scaling of the complete training set will enhance
training performance. Other works [41,42] on U-Nets sug-

gested to use batch normalization, which we did not find as
important as sample-wise normalization. Padded convolu-
tions retain the input shape through zero-padding the input
before the convolution operation. However, physical pro-
cesses lack an intuitive padding option: when considering
a complex wave field as input, padding the respective array
with zeros would be somewhat obscure as it would introduce
some physically inconsistent data. This work employs valid
convolutions, hence requiring cropping of the feature maps
in the skip connections as proposed originally for the U-Net
[10]. Furthermore, physically consistent padding of the out-
put field is required before re-injecting into the recursive time
stepping scheme. A direct way to achieve physics-consistent
padding is to request the domain� to have a sufficient amount
of boundary pixels, such that the convolution-induced crop-
ping will only erase features located outside the physical
domain, which can then easily be padded with constants.
Time-invariant Dirichlet boundary conditions are considered
by enforcing u (x, t) = hDirichlet(x) for all x ∈ X δ� in the
input path. Accordingly, the predicted values û (x, t) are re-
set to hDirichlet(x) for all x ∈ X δ� before the next prediction
of the recursive time stepping scheme. For time-invariant
no-flux (Neumann) boundary conditions we found that it is
sufficient to enforce u (x, t) = 0 in the same manner, while
also providing a domain mask G.

123

1232 Computational Mechanics (2023) 71:1227–1249

3.4 Recursive time stepping

To define the recursive time stepping scheme, we will estab-
lish some notations first: Let u(t, x) define the state of a
dynamical system at coordinate x and time t , let X be a
set of coordinates x defining the grid points of a Cartesian
grid and let X� = X ∩ � be a subset of X within the
domain �. The subset X δ� denotes the boundary-subset of
X defined by X δ� = X \ X�, which thus contains all grid
points outside the domain. Furthermore we define a discrete
state-representation of the dynamical system at time t as

U (t) =
{
u(t, x)

∣∣∣∣ x ∈ X , t ∈ R

}
. (1)

where applicable, index notations un (x) = u (t0 + n�t, x)
and Un = U (t0 + n�t) are used to denote the continuous
state and the respective discrete field quantity at the n-th
discrete time step. A set of coordinates x in the vicinity of a
coordinate p shall be denoted by

X◦ (p) =
{
x ∈ X

∣∣∣∣ d (x, p) < r

}
(2)

with d(x, p) as the Chebyshev distance of x and p. The
extent of the vicinity is defined by r . Consequently, U ◦

n (p)
shall denote the discrete state representation in the vicinity
of p at the n-th discrete time step.

Following the ideas of classical explicit numerical time
stepping schemes, we propose to setup a flow map model fθ
parameterized by model weights θ that advances a chrono-
logical series ofm preceding statesUt−n (n ∈ {1, 2, . . . ,m})
according to

un (x) ≈ ûn (x) = fθ
(
U ◦
n−m(x), . . . ,U ◦

n−1(x),

C◦(x),G◦(x)
) ∀x ∈ X� (3)

respecting Dirichlet or no-flux Neumann boundary condi-
tions:

u (x, t) = û (x, t) = hDirichlet (x) ∀x ∈,

∂u (x, t)

∂n
= ∂ û (x, t)

∂n
= 0 ∀x ∈ δ�.

(4)

In Eq. (3),C◦ (x) denotes the (time-invariant) spatial domain
parameterizations in the vicinity of x , e.g. inhomogenous
material parameters and in Eq. (4) δ� denotes the domain
boundary and n the unit normal at the boundary. Owing to
the rectangular shape of input tensors to the ML model fθ ,
the binary domain mask G◦ (x) is supplied as additional
input indicating the location of the computational domain
� in the vicinity of x . As the model can only compute a
discrete approximate to the true solution un(x), we denote

the predicted state at the n-th discrete timestep as ûn (x).
This leads to the discrete representation of the predicted

state Û (t, x) =
{
û(t, x)

∣∣∣∣ x ∈ X�, t ∈ R

}
, which the ML

model is in fact predicting. For brevity x is omitted in the
following specifications. In essence, the model fθ learns a
flow map for advancing the available historic field states
one time step into the future, without requiring knowledge
about the underlying equations governing the dynamical pro-
cess, but only using data. The predicted state can be fed into
the new set of inputs, and thereby form a self-feeding time
stepping scheme for long term predictions: starting from m

preceding states
{
U ◦−m,U ◦

−(m−1) · · · ,U ◦−1

}
, a prediction Û ◦

0

is obtained, which in the next step is injected into the input
while dropping the last entry of the previous input:

step j = 0: Û0 =
{
fθ

(
U ◦−m(x),U ◦

−(m−1)(x), . . . ,

U ◦−1(x),C
◦(x),G◦(x)

) ∣∣∣∣ x ∈ X

}

step j = 1: Û1 =
{
fθ

(
U ◦

−(m−1)(x),U
◦
−(m−2)(x) . . . ,

U ◦−1(x), Û
◦
0 (x),C◦(x),G◦(x)

) ∣∣∣∣ x ∈ X

}

step j = 2: Û2 =
{
fθ

(
U ◦

−(m−2)(x),U
◦
−(m−3)(x), . . . ,

Û ◦
0 (x), Û ◦

1 (x),C◦(x),G◦(x)
) ∣∣∣∣ x ∈ X

}
(5)

Note that these equations represent the point-wise prediction
scheme that is performed for all x in X at each time step. Con-
sequently, from the m-th step onwards, the model is making
predictions solely based on previous predictions. This self-
feeding operation of the network represents a trivial recursive
time stepper which can be run on new initial conditions2 to
make predictions on future state evolution. The optimal num-
ber of previous time steps m used as input is clearly related
to the physics at hand. For the two-dimensional wave equa-
tion studied in this work, m = 3 was found as an optimal
value. Theoretically, this is also the minimal value to provide
enough information for approximating first and second time
derivatives. The schematic in Fig. 1 illustrates this approach
on the example of the propagation of waves in a rectangular
domain with a rounded edge and a spatially varying distri-
bution of the wave speed parameter. Sections4.1.4 and 4.2.3
present more details on the rate at which the autonomous
operation of the fully trained Up-Net accumulates prediction
errors and diverges from the true solution Un in finite time.

2 For the described architecture, m initial states are required. If only
a single initial state is available, one may build analogous models for
m = 1, m = 2 etc. which will be called once to generate the initial m
samples required for the self-feeding time stepping.

123

Computational Mechanics (2023) 71:1227–1249 1233

This behavior is inevitable for explicit schemes, nonetheless,
our results indicate that the prediction horizon can be long.
As the proposed time stepping scheme is rather simplistic,
future work may touch on more sophisticated schemes.

4 Results

We study the performance of the proposed Up-Net for pre-
dicting the two-dimensional oscillatory dynamics of the
linear wave equation and the asymptotic long-term evolution
of processes governed by the heat equation. Particular focus
is put on model generalization properties for different scene
parameterizations. Two baseline models are chosen from
two current state-of-the-art neural architectures to compare
against the performance of our Up-Net model U p, namely a
fully convolutional encoder–decoder model UED and a con-
ventional U-Net model U . See Appendix B for more details
on the specific model configurations. For the UED and U
models, all input matrices are concatenated into one tensor,
such that field, boundary and domain parameterization infor-
mation represent different channels in the input. All studies
presented in this work were performed on a workstation
equipped with a GPU (NVIDIA Titan RTX 24GB), 32GB of
DDR4-RAM (2666MHz) and an Intel Xeon W-2133 CPU.

4.1 2Dwave equation

The two-dimensionalwave equationwith variable coefficient
c

∂2u

∂t2
= c2∇2u = c2

(
∂2u

∂x21
+ ∂2u

∂x22

)
(6)

describes a wide range of phenomena and spatio-temporal
dynamics in structures, fluids, electromagnetics, cosmology,
geophysics, and other domains [43]. Despite the simplicity
of this second-order linear PDE, complex wave fields and
pattern formations arise from the time evolution of initial
states in bounded domains. Domain boundaries and spatially
inhomogeneous wave numbers c(x) give rise to reflection
and refraction, respectively, and produce waves interacting
across a large range of frequencies and amplitudes.

4.1.1 Data generation

For the generation of training and validation data, a set of
prototypical cases is set up using the FEniCS computing plat-
form [44]. These cases cover a wide combinatorial range of
initial states, domain shapes, and domain parameterizations.
The training data comprise a square domain (128×128) with
optional rectangular boundary inclusions (creating outer cor-
ners) and wave number inhomogeneities, overall resulting in

100 different training scenes. The validation scenes are set up
from rectangular domains (256×128) that feature a compli-
cated combination of training data features and completely
new features, such as rounded domain edges. By setting up
validation scenes that are qualitatively very different to the
training data scenes, we can evaluate the generalization prop-
erties of the proposed approach. Figure2 depicts a schematic
of the training and validation scenes. For the initial state of
the field quantity, i.e. the elevation u (x, t = 0) ∀x ∈ X�,
a two-dimensional Gaussian of variable amplitude is placed
randomly within the domain. For each scene a direct time
integration is performed up to t = 8s using a variational
formulation of Eq. (6). The displacement fields Un are com-
putedwith a spatial discretizationof�x = 1

32 mandcaptured
every�t = 0.01s resulting in 800 time steps per scene. Data
samples are generated by rolling window processing taking
m = 3 preceding domain states as input, and the next domain
state as output. Using data augmentation (horizontal and ver-
tical flips, amplitude inversion), a total number of 478, 200
training data samples and 3188 validation data samples are
generated, see Appendix A for more details on the data gen-
eration.

4.1.2 Model setup and training methodology

A U3-Net prediction model U3 is set up to consume m = 3
wavefield snapshots U, a binary domain mask G, and the
spatial distribution of wave numbers C , to output the wave-
field at the next time step. k = 3 stages are considered, and
two variants of the model are generated by choosing differ-
ent convolutional blocks: U3

64 features a static number of 64
filters per stage, which we found as good tradeoff for model
complexity and model accuracy, while U3

29,×2 features a cas-
cade of doubling numbers of filters per stage, as displayed in
Fig. 1 and starting at 29 filters. The latter number of filters is
chosen in a way that the number of trainable parameters nθ

is close to 106 for all model architectures in the experiments.
Sample-wise normalization of the wavefield inputs is map-
ping the zero-symmetric range ofmaximumwave amplitudes
to [0, 1]. Using a batch size of 128 and a sample-wise normal-
ized domain-adaptive mean-squared error (nMSE, x ∈ X�)
loss function, all models are trained using the adam opti-
mizer for 300 epochs with a learning rate decaying from
10−4 to 10−5, followed by another 50 epochs with a learning
rate decay from 10−5 to 10−7. We found this training strat-
egy beneficial for the long-term prediction capabilities of the
models, see Appendix C for details.

4.1.3 Single-step predictions

First, the training convergence, and the performance of the
flow map models are studied by assessing the evaluation of
a single prediction, i.e. mapping preceding domain snap-

123

1234 Computational Mechanics (2023) 71:1227–1249

Fig. 2 Prototypical cases set up for generating the training data (top
row) and validation data (bottom row) for the wave equation studies:
homogeneous domain (a), rectangular inclusions (b, c) and domain
inhomogeneities (d, e). Two variants per case are generated by ran-

domly selecting the variation parameters x, y, a, b (for cases b–e) and
α (for cases c, e). Validation cases (f) and (g) represent a combination
of the training cases, while cases (h) and (i) are completely different
from all training scenes

shots one time step into the future. In the following, this
is denoted as single-step prediction. Figure3 displays the
training process for six models, namely the ED and U-Net
baseline models and the new Up-Net models, each in a vari-
ant with a doubling number of filters and a variant with a
constant number of filters at each stage. Note that all models
feature the (approximately) same amount of trainable param-
eters (see Appendix B), hence their overall learning capacity
can be estimated to be of the same order in magnitude.

The loss evolution of all six models shows similar char-
acteristics, but also clear differences in the overall training
performance. Starting from values of magnitude nMSE =
10−3 after the first epoch, the training loss reduces to val-
ues of approximately 2.9 × 10−7 (UED

106 model), 2.2 × 10−8

(U96 model), and 1.1×10−8 (U3
64 model). The different filter

configurations slightly effect the training and validation loss
for U-Net and U3-Net models with a clear advantage for the
double-cascading filters. None of the models exhibits over-
fitting. The two-step learning rate decay strategy helps the
U-Net and U3-Net models particularly towards the final 100
training epochs.

The models based on the U-Net and the proposed Up-
Net architecture exhibit the best generalization capabilities
to different scenes as displayed in Table 1, where the loss

averaged over all four validation cases is reported in terms
of different metrics. The sample-wise normalized nMSE loss
as shown in Fig. 3 is accompanied by non-normalized MSE
and MAE metrics. Further, the mean error of means (MEM)
is reported

MEM =
∣∣∣∣
∑n

i=1 u(xi) − ∑n
i=1 û(xi)

n

∣∣∣∣ (7)

that is quantifying an incorrect offset of the whole pre-
dicted field towards larger or smaller values. Analogous to
the nMSE, we define the MEM as a domain-adaptive metric,
wheren denotes the number offield valueswithin the domain.
The Up-Net outperforms the classical U-Net by around one
order of magnitude. Therefore, we conclude that our Up-Net
exhibits superior performance over the U-Net architecture
for the given problem based on the convergence behavior
and the validation loss value after the same number of train-
ing epochs. The performance values reported in Table 1 were
qualitatively confirmed in independent training runs.

While the overall validation loss describes a global and
heavily averaged metric for the large validation data sets,
Fig. 4 displays a more detailed view into the precision of the
flow mapping models for each of the four validation cases.
Inputs from different time points of the wave propagation are

123

Computational Mechanics (2023) 71:1227–1249 1235

Fig. 3 Evolution of nMSE training loss (solid line) and validation loss
(dot markers) of the baseline encoder–decoder models UED (left col-
umn), the baseline U-Net models U (center column), and the proposed
U3-Net models U3 in (right column) trained on the wave equation

dataset described in Sect. 4.1. (×2) indicates models with doubling
cascades in the number of filters per stage. A two-stage exponential
learning rate decay training strategy is applied (gray line)

Table 1 Validation error metrics
of single-step predictions for
baseline and proposed model
configurations for training runs
reported in Fig. 3 at epoch 350
for the wave equation case study

Model Architecture Loss (nMSE) MSE MAE MEM

U3
64 Up-Net 9.37 × 10−8 1.44 × 10−9 5.97 × 10−6 5.95 × 10−7

U3
29,×2 Up-Net 6.12 × 10−8 1.27 × 10−9 6.28 × 10−6 7.15 × 10−7

U96 U-Net 7.15 × 10−7 8.54 × 10−9 9.28 × 10−6 1.32 × 10−6

U46,×2 U-Net 4.85 × 10−7 7.69 × 10−9 1.12 × 10−5 1.72 × 10−6

UED
106 ED 3.16 × 10−6 3.91 × 10−8 3.09 × 10−5 4.45 × 10−6

UED
48,×2 ED 3.43 × 10−6 4.41 × 10−8 3.44 × 10−5 5.92 × 10−6

fed to the deep learning models, and their error in predicting
the next time step of the dynamic evolution is assessed. One
can observe that the single-step prediction accuracy varies
among the examined network architectures, and in general
decreases for predictions at later time instances. The latter
mainly results from the sample-wise normalization and a
respective loss function operating on normalized data sets.
Rather constant prediction errors are maintained, when eval-
uated with respect to the maximum amplitudes of the wave
fields. Fluctuations in the single-step error which do not cor-
relate with the maximum amplitude of the wave field can
be the caused by a variety of phenomena (reflections, refrac-
tions, superposition of waves) that increase the complexity of
the prediction task at specific time instances and thus result
in slightly larger errors.

All U-Net-inspired models demonstrate good single-step
prediction capabilities when evaluated on the four validation
datasets. In direct comparison, the ED architectures show a
significantly weaker predictive ability. Overall, the U3-net
models U3

64 and U3
29×2 outperform the baseline models at

all times steps and validation cases. Out of the two U3-Net
models, the U3

64 with a constant number of filters exhibits
slightly more accurate single-step predictions for validation
cases (f) and (g) as visible from the boxplots in Fig. 4. Here,
the amplitude normalization highlights the advantages in pre-

diction quality when using the proposed Up-Net instead of
the baseline models.

4.1.4 Long-term predictions

To assess the predictive capabilities of the models we now
examine multiple long-term prediction scenarios, i.e. by
injecting the trained flow map model into the recursive time
stepping scheme described in Sect. 3.4. Figure5 depicts the
ground truth wave propagation along with the prediction of
the U3

64-Net based time stepper for validation case (f). The
domain comprises a rectangular shape with an inclusion and
an inhomogeneous spatial distribution of the wave speed
parameter, see Fig. 2. Reflections at the domain boundaries
occur after time step 50, and refraction at the material inho-
mogeneity is visible at time step 75 in the central domain
region.

The spatial error distribution is computed as the abso-
lute Euclidean distance between ground truth and prediction,
shown in the third panel of Fig. 5. After 100 integration steps
the mean absolute error (MAE) amounts to 1.33 × 10−3,
which is an error of about 2.5% in relation to the maximum
amplitude of the wave field (5.36 × 10−2). After 200 time
steps the MAE is 3.79 × 10−3 which is a relative error of
6.4%. For the given time instances, the largest local error
is observed in the narrow field below the left domain inclu-

123

1236 Computational Mechanics (2023) 71:1227–1249

Fig. 4 The top row shows the single step prediction error of baseline
and proposed models over all time steps of the validation cases (f, g, h,
i) along with the evolution of the maximum wavefield amplitude over
time. Note that the scale of the vertical axis are different for both quan-

tities. The bottom row shows analogous box-plots of the single step
prediction error (MAE) scaled by the maximum amplitude at each time
instance

sion. After 100 prediction steps a maximum local error of
7.21× 10−3 is obtained here, increasing to 1.9× 10−2 after
200 steps. The point-wise error plots (clipped at 100%) in
the bottom panel helps to identify local errors highlighted
by the relative measure. Caution must be taken when inter-
preting the rather large error values displayed there: As the
scene is initialized with zero amplitudes in the domain (aside
from the Gaussian), very high values appear in regions where
the ground truth amplitude is zero: a small prediction imper-
fection, even numerical rounding errors, will naturally result
in extreme relative errors. As the waves propagate into the
domain, large relative errors are only visible where wave
amplitudes are close to zero, again causing a division by
nearly zero. In most of the domain with substantial surface
amplitudes low relative error values are visible. Particularly,
the domain inhomogeneity is not visible in the display of the
relative error, indicating an accurate prediction across the
material boundary. Excluding the computational singularity
in regimes of zero amplitude, the relative error analysis indi-
cates that predictions are accurate throughout the domain up
to step 100. Overall, no particularly large errors are observ-
able in proximity of the material inhomogeneity in the center
of the domain, which is a major advantage over state-of-
the-art approaches. The model is capable of respecting the
abrupt change of wave numbers in this regime, which is a

challenging task causing refractions on the boundary of the
inhomogeneity, and differentwave propagation speeds inside
the inhomogeneity, see time step 75. In a visual comparison
it is hard to distinguish the ground truth and the prediction
up to prediction step 100. After 150 and 200 steps, a slight
global shift towards positive values can be observed in some
regions of the predicted wave fields along with some loss
of detail. However, the overall wave field topology of the
ground truth is still clearly recognizable, even for long-term
predictions of up to 200 steps.

Adetailed investigation of the long-termprediction behav-
ior is shown in Fig. 6. Here, the error evolution of the
recursive time stepping scheme is examined using the data of
validation case (f) featuring 800 time steps. To compare the
predictive capabilities of the proposed Up-Net architecture
to those of the baseline models, long-term predictions are
initialized at seven different time instances of the validation
case using all fully trained models described in Sect. 4.1.3.
Essentially, seven different cases with different initial con-
ditions are run, to examine the impact of the different initial
physics on the long-term prediction capabilities. Wave fields
at early time steps comprise larger amplitudes but simpler
topology, while the wave fields towards larger time steps get
more complicatedwithmany interacting travelingwaves.We
will solely focus on the U3-Net predictions first. Naturally,

123

Computational Mechanics (2023) 71:1227–1249 1237

Fig. 5 Evolutions and predictions of wave field dynamics in a com-
plex and heterogeneous domain using the U 3

64 model. The material
inhomogeneity is indicated by the hatched patch in upper left panel.
The first prediction is initialized from wave fields at time steps t =
1.47, 1.48, 1.49s from validation case (f). From there on, recursive time

stepping (Sect. 3.4) is performed for a total of 200 time steps. The first
row shows the ground truth U obtained from numerical simulations,
the second row shows the predicted wave fields Û , the third row the
absolute difference |Û − U |, and the last row the relative point-wise
error at selected time steps. White areas indicate the domain boundary
regions

the error accumulates by the number of time steps predicted.
However, the analysis shows that the errors grows especially
fast for simulations initialized at early time instances, such
as time step 50 or 150. For example, the error grows to
MAE ≈ 3 × 10−3 within 100 time steps for the long-term
predictions performed using the model U3

64. If the time step-
ping is initialized when the wave field is fully developed, the
error accumulation is considerably slower: 100 time steps

result in an MAE of 8.5× 10−4, 1.2× 10−3, 7.7× 10−4 for
simulations started from time steps 450, 550, 650. Again,
in most application scenarios, this behavior is desirable and
hypothesized to be linked to the normalized loss evaluation
as outlined in Sect. 4.1.3.

Compared to the EDmodels, the U-Net-typemodels show
significantly better long-termprediction capabilities in Fig. 6.
With few exceptions, the ED models exhibit the greatest

123

1238 Computational Mechanics (2023) 71:1227–1249

Fig. 6 Comparison of long-term predictions using the recursive time
stepping scheme initialized at time steps 50, 150, 250, 350, 450, 550
and 650 of validation case (f) and evaluated 100 steps for two con-

figurations of the ED, the classical U-Net architecture, and two model
configurations of the proposedUp-Net architecture. For scaling reasons,
the displayed error evolution is limited to an MAE of 2 × 10−2

errors of the examined network architectures. The long-term
predictions exhibit four to ten times greaterMAEerror values
compared to the respective best performing Up-Net model.
When examining the classical U-Net-type models U96 and
U46×2, a considerable difference in the precision of long-term
predictions can be observed.Regarding the scene and dynam-
ics contained in validation case (f), themodel configuredwith
a constant number of filters (U96) shows clear advantages
when compared to the model with stage-wise doubling filters
(U46×2). A similar, although less pronounced, trend is also
visible for the proposed Up-Net models. Most importantly,
both Up-Net models, namely the U3

64 and the U3
29,×2 model,

exhibit the smallest prediction errors of the investigatedmod-
els at most time instances. Notably, the model U3

64 slightly
outperforms its counterpart U3

29,×2. Considering the errors
after 100 steps of prediction, the Up-Net architectures yield
factors between 1.9 (time step 650) and 3.14 (time step 550)
performance increase compared against the best-performing
U-Net model, and factors between 2.15 (time step 150) and
5.8 (time step 450) performance increase compared against
the best-performing ED model.

Overall, the proposed fusion of domain information and
spatial parameter distributions allows for accurate short-
and long-term predictions of the investigated wave dynam-
ics. Especially, U-Net architectures are found to be suitable
for generic predictions of spatio-temporal dynamics. The
proposed Up-Net can be considered the most promising can-
didate among the investigated architectures. This finding is
evident from the error metrics related to the previous anal-
ysis of long time-time predictions for all validation cases,
as summarized in Table 2. For all 28 prediction cases, the
proposed U3

64 performs the best in terms of both MAE and
MSE error metric. While classical U-Net models show sig-
nificantly poorer performance, some EDmodels even exhibit
instability, i.e. exponentially growing errors.

Assessing the long-term term predictions, we found an
indication for a linkage of the prediction accuracy and the
single-step shift-type error MEM. The MEM measures a
global offset of the mean wavefield predictions from the
ground truth. This shift of the complete field is observed to
out-weight the general single-step accuracy for the long-term
predictions in some cases. That is, models of lowMEM error
tend to perform better in long term than models with a low
single-step error. As outlined in Appendix C, all examined
models show a fluctuating behavior of the MEM through-
out the training process, i.e. the predicted field quantities
experience some accumulating offset error of the mean field
amplitude. By decreasing the learning rate we were able to
reduce these fluctuations and thus enhance the long-term
accuracy of the final models. We therefore presume that
further optimizations with regard to theMEM (e.g. the incor-
poration of theMEM in the loss function) can lead to an even
better performance of the Up-Net architecture in terms of
long-term predictions. Additional investigations of the long-
termprediction behavior performedon the validation datasets
(g), (h) and (i) can be found in the Appendix D.3, further sup-
porting the findings discussed before.

4.1.5 Out-of-distribution generalization properties

So far, the generalization to different scenes are investi-
gated on the example of the four validation cases, that
significantly differ from all training examples in terms of
geometry, scene composition and domain aspect ratio. The
final investigation on the generalization properties is con-
cerned with out-of-distribution physical parameters, i.e. with
cases that involvewavenumber parameterizations that are not
featured in the training datasets. The training data was gen-
erated using wave numbers from a discrete set cbase,train ∈
[0.5, 0.75, 1.0, 1.25, 1.5]. We now study case (f) for wave
numbers cbase picked in between the training values and

123

Computational Mechanics (2023) 71:1227–1249 1239

Table 2 Comparison of U3-Net, U-Net and encoder–decoder models in terms of mean squared error (MSE) and mean absolute error (MAE)
computed for predictions after 100 time steps

Model MSE100 MAE100
Mean ± stdev Min Max Mean ± stdev Min Max

U3
64 9.38 ± 9.77 × 10−6 1.02 × 10−6 3.99 × 10−5 2.08 ± 1.12 × 10−3 7.34 × 10−4 4.97 × 10−3

U3
29,×2 2.01 ± 1.93 × 10−5 2.93 × 10−6 7.07 × 10−5 2.93 ± 1.34 × 10−3 1.15 × 10−3 6.22 × 10−3

U96 2.58 ± 2.04 × 10−5 3.78 × 10−6 8.11 × 10−5 3.90 ± 1.48 × 10−3 1.57 × 10−3 6.91 × 10−3

U46,×2 1.82 ± 3.96 × 10−2 6.40 × 10−6 1.82 × 10−1 3.06 ± 4.90 × 10−2 1.52 × 10−3 1.84 × 10−1

UED
106 0.98 ± 1.45 × 10−3 1.46 × 10−5 7.47 × 10−3 1.54 ± 0.91 × 10−2 2.89 × 10−3 3.69 × 10−2

UED
48,×2 2.51 ± 0.13 × 10+3 4.49 × 10−5 7.02 × 10+4 0.20 ± 1.0 × 10+1 5.63 × 10−3 5.42 × 10+1

The self-feeding long-term predictions are performed for all four validation cases (f, g, h, i) and initialized at t ∈ {0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5} s.
The table shows mean and standard deviations, as well as the smallest and largest errors resulting from the 28 predictions per model

outside the maximum range of that set, i.e. for cbase =
[0.2, 0.25, . . . , 1.75, 1.8]. The data generation is performed
according to Sect. 4.1.1 and again the wave fields are ini-
tialized with Gaussians. The model U3

64, which performed
best in the previous sections, is applied to the new 32
cases by performing long-term predictions at seven different
time-instances in analogy to Sect. 4.1.4. Note again, that no
model-retraining was performed. Figure7 shows the average
MAE of all long-term predictions as a function of the domain
parameterization c. It is apparent that the error is small at the
wave number configurations which were used for generating
the training data.However, theMAE is only slightly larger for
wave numbers placed in between the values of cbase,train. Con-
sequently, we have been able to observe good generalization
capabilities in terms of interpolation for parameterizations
within the training data distributions. Furthermore, themodel
also exhibits some capabilities to extrapolate outside the lim-
its of cbase,train. Although the model has never seen any wave
dynamics outside c = 0.5 and c = 1.5, predictions out-
side this interval are valid and of proper accuracy, at least
for short-term and mid-term time stepping intervals. The
error increases significantly for wave numbers that depart
far from the training set values. The threshold for accepting
a predictionmay depend on the actual case and personal pref-
erences, howeverwe found that the predictions for edge cases
cbase = 0.5 and cbase = 1.8 are in good agreement with the
ground truth when compared visually for the main features
of the wave field. We should also note that the wave num-
ber enters the physics in quadratic form, which explains the
seemingly rapid performance degradation for values larger
than c = 1.5. Interestingly, the error increases linearly with
prediction time, as it visible from the quasi-parallel evolution
of the error values reported for different numbers of predic-
tion steps in Fig. 7.

4.2 Heat equation

The two-dimensional heat equation with variable coefficient
reads

∂u

∂t
= ∇ · (c∇u) = ∂

∂x1

(
c

∂u

∂x1

)
+ ∂

∂x2

(
c

∂u

∂x2

)
(8)

where c(x) > 0 denotes the thermal conductivity of the
domain. The steady-state solution u (x, t → ∞) to an initial
condition u (x, 0) satisfies ∂u

∂t = 0. We study the time evolu-
tion for Dirichlet boundary problems. Note that the constant
temperatures are defined at the boundary of the domain.

4.2.1 Data generation

The generation of training and validation data for the heat
equation problem is performed in analogy to Sect. 4.1.1:
training data scenes comprise a square domain (128 × 128,
�x = 1

16 m) featuring optional boundary inclusions and ther-
mal conductivity inhomogeneities (c ∈ {0.5, 0.75, 1, 1.25, 1.5}).
In addition to initial disturbances, also variations of the
boundary values are considered by generating datasets with
constant boundary values of variable magnitude as well as
datasets with boundary values having horizontal or diag-
onal linear gradients. Boundary values and initial values
varied between normalized values of zero and one, see
also Fig. 11. This setting effectively renders the scene a
singularity-like problem at the domain boundaries, where
temperatures jump in the initial condition.As the temperature
distributions rapidly approach a steady state, time integra-
tions are performed up to t = 0.6s, i.e. 120 steps using
�t = 0.005s. Using data augmentation (rotation by 90◦,
180◦ and 270◦) and rolling window processing, 275, 184
data samples are generated from 588 training scenes. Four
rectangular (256 × 128) validation datasets are generated
accordingly, featuring rectangular, circular and H-shaped
inclusions, conductivity inhomogeneities as well as linear
temperature gradients on the boundary, see also Fig. 11. As

123

1240 Computational Mechanics (2023) 71:1227–1249

Fig. 7 Out-of-distribution study of model U3
64 on variants of validation

dataset (f) with cbase = cin and cbase ∈ [0.2, 0.25, . . . , 1.75, 1.8]. The
MAE is computed as average over seven long-term predictions starting

at different time-instants (see Fig. 6) and evaluated after 25, 50, 75 and
100 prediction steps. The vertical dashed lines indicate waves numbers
cbase used for model training

these characteristics, if at all, are only differently featured
in the training data, long-term predicting the thermal energy
flow requires generally valid models that have learned a dif-
fusion process.

4.2.2 Model setup

To predict the evolution of the temperature fields under set
boundary values, a U3-Net is utilized. The inputs of the three
distinct encoder paths are (i) three preceding temperature
fields separated by �t , (ii) a binary domain mask, and (iii)
a spatial distribution of the thermal conductivity parameter
c(x). The temperature fields (i) also include information on
the Dirichlet boundary conditions by replacing the temper-
ature field with extrapolated boundary temperatures at all
x ∈ X δ�. As temperatures of training and validation datasets
are limited to the range [0, 1], training is performed without
additional normalization. A domain adaptiveMSE loss func-
tion is used, and optimizer, learning rate (decay) and number
of training epochs are chosen according to Sect. 4.1.2. Fol-
lowing the results for the wave equation, we focus on models
with constant filter sizes permodel stage for the heat equation
studies. For a fair comparison, the filter sizes of the U3-Net
and those of the two baseline models, the classical U-Net,
and the ED architecture, are chosen such that the number of
trainable parameters is approximately the same, see Table 3.

4.2.3 Predictions

A comparison of the single-step performance of the three
models is shown in Table 3. The table provides the average
of the 4 × 117 = 468 prediction errors available from the
validation datasets. Out of the three models, the Up-Net type
model U3

64 exhibits the most precise single-step step predic-
tions. In terms of the average single-step prediction error, the
Up-Net outperforms the classical U-Net by a factor of 1.8
and the ED architecture by a factor of 40. Also for the mean

field values, i.e. the MEM error metric, the proposed Up-Net
outperforms the baseline models by two orders of magni-
tude. As all models shown here feature the same amount of
trainable parameters, we conclude that the proposed Up-Net
architecture is superior to conventional neural architectures.

A closer view into the single-step error throughout the
transient evolution of the temperature field is given in Fig. 8a.
Here, a validation case with two rectangular inclusions and
a centered rectangular inhomogeneity is investigated, see
Fig. 9. In analogy to our findings from Sect. 4.1.3 the single-
step predictions exhibit larger errors in the first time steps,
which here coincide with themost transient phase of the tem-
perature evolution. In terms of the single-step prediction the
Up-Net clearly outperforms the baseline architectures at all
time instances. This observation holds also for the remain-
ing validation cases. For the latter, similar characteristics are
discernible (data not shown explicitly, but included in the
average metrics displayed in Table 3).

To assess the long-term prediction capabilities of the
proposed architecture, the evolution of the transient heat con-
duction is examinedusing the recursive time stepping scheme
with models U3

64, U96 and UED
106. Figure9 displays the temper-

ature distribution of the ground truth U, the prediction Û
and the spatial distribution of the U3

64 prediction error at sev-
eral time steps for a validation case with rectangular domain
inclusions and a conductivity inhomogeneity in the center of
the domain. Notably, large gradients are evident in the thin
domain regions between the inclusions and the outer domain
boundaries, see upper left region of the domain in Fig. 9. Fig-
ure8 (b) displays the respective domain-MAE errors for all
three models for the same long-term prediction. Considering
model U3

64, the prediction error grows until time step 20 and
particularly in the regime of the inhomogeneity with abrupt
changes in thermal conductivity. From time step 20 onwards,
the prediction error keeps decreasing. After 100 time steps,
a steady-state heat distribution is achieved. As the error does
not show an accumulation behavior, the results indicate that

123

Computational Mechanics (2023) 71:1227–1249 1241

Table 3 Error metrics MSE,
MAE and MEM of single-step
predictions for baseline models
and proposed model
configurations evaluated within
domain � for four heat equation
validation datasets

Model Architecture f0/1/2 Parameters MSE MAE MEM

U3
64 Up-Net 64 991,617 3.29 × 10−7 2.46 × 10−4 4.29 × 10−5

U96 U-Net 96 991,681 3.82 × 10−5 4.41 × 10−4 2.18 × 10−3

UED
106 ED 106 1,006,153 1.45 × 10−4 9.89 × 10−3 9.14 × 10−3

f0, f1 and f2 denote the number of filters at the three encoding/decoding stages of the architectures

Fig. 8 Evaluation of the fully trained ED,U-Net andU3-Netmodels for
the heat equation case. a Displays the single-step prediction error, i.e.
the domain adaptive MAE, for 117 time steps. b Shows the error evolu-

tion for a long-term prediction over 100 time steps. Results correspond
to the validation case shown in Fig. 9

the U3 model did in fact learn a diffusion process, and hence
compensates for errorsmade in the first prediction steps.Very
similar behavior was observed in all validation cases studied
in this work.

Surprisingly, the superior single-step performance of the
Up-Net model, see Table 3 and Fig. 8a, does not translate to
improved long-term predictions when compared to the base-
line models, see Fig. 8b. Although all models were able to
generate decent long-term predictions, here the fully trained
ED and U-Net models outperform the U3-Net model in most
cases. In the wave field studies, we were able to track such
behavior back to theMEM single-step error, which identifies
models that are prone to introducing a global field offset in
long-term predictions. For the heat equation studies however,
the discrepancy between single-step and long-term predic-
tion quality can not be linked to the MEM metric, as the
U3-Net model exhibits the best results in this regard, see
Table 3. However, as themodels were only trained to perform
single-step predictions, the discrepancy of single-step and
long-term accuracy is not entirely inexplicable, as some local
types of single-step prediction errors might amplify when the
recursive time stepping scheme is applied. We assume that a
direct integration of the recursive time stepping scheme in the
training processes, i.e. the loss function, would address this
problem and by design eliminate the discrepancy of training
performance and long-term prediction capabilities.

4.3 Computational efforts

As computational efforts are a major factor for assessing the
applicability of a numerical method, an overview is given
on the efforts related to the data generation, network train-

ing and model inference stages of the presented approaches.
Here, we limit ourselves to a consideration of the wave
equation problem. As the model complexity for the heat
equation is very similar, the timing results for the deep learn-
ing models can be transferred directly, while heat equation
training times are available from Table 4. All computations
reported in this work were performed on a desktop work-
station equipped with a GPU (NVIDIA Titan RTX 24GB),
32GB of DDR4-RAM (2666MHz) and an Intel Xeon W-
2133 CPU. The software, accessible at https://github.com/
TUHH-DYN/DeepStep, is written in Python using the deep
learning framework TensorFlow. The timings reported here-
after are subject to hardware and software configurations,
hence they shall only serve for illustrative purposes.

Training and validation datasets are generated using the
finite element method (FEM) provided by the open-source
library FEniCS, see Sect. 4.1.1. The data generation process
consists of two major parts: the FEM computations and a
post-processing step to transform and save the data aligned to
Cartesian grids.3 Using our hardware, generating a 800-step
training time series of 128×128 resolution required approx-
imately 117s. Particularly, the FEM solution efforts amount
to approximately 44 s and the post-processing efforts amount
to approximately 73s on average across all scenes. The gen-
eration of a 800-step validation time series (256×128) takes
approximately 654s, of which the FEM solution consumes
248s. The computing times vary slightly depending on the
specific configuration of the scene and the resulting com-

3 Interpolation between the computational mesh and the Cartesian grid
was performed using the Python package scipy griddata, which is per-
forming a linear barycentric interpolation for every time step.

123

https://github.com/TUHH-DYN/DeepStep
https://github.com/TUHH-DYN/DeepStep

1242 Computational Mechanics (2023) 71:1227–1249

Fig. 9 Long-term predictions of heat conduction: 100 prediction steps
are shown for a validation case with two rectangular inclusions and a
centered rectangular inhomogeneity (hatched patch in upper-left panel).
The first prediction is initialized from temperature fields at time steps

t = 0, 0.005, 0.01. From there on, the recursive time stepping scheme
is applied using the proposed the U3

64 model. The first row shows
the ground truth obtained from numerical simulations, the second row
shows the predictedfields, and the last row shows the absolute difference

plexity of the physics. The generation of the 100 training
and 4 validation sets thus required approximately 239min
of pure computing. On the deep learning end, the training
part is the most time-consuming part. Table 4 in Appendix
B lists all training times for all models shown in this work.
Considering the best-performing U3

64 network, training took
175h. Data generation and model training hence consumed
a total of 179h of computation, and the data sets consume
12 and 11.5GB for the wave and heat equation, respectively.
A reduction of training time is in sight when using the lat-
est data processing pipelines shipped with all major deep
learning frameworks. To reduce the training efforts, addi-
tional studies will be carried out to find the minimal data set
size required for achieving comparable prediction accuracy.
Furthermore, more extensive neural architecture and hyper-
parameter search may result in models of less complexity
that can be trained faster. An extension to three-dimensional
cases is straight-forward from the architectural perspective.

Hardware requirements will however become higher, as the
size of the training batch samples will require for larger GPU
storage.

Deep learning model inference times greatly depend on
the GPU hardware, and on the number of concurrent predic-
tions, i.e. the maximum batch size. The hardware used in this
work allowed for a batch size of 1024 samples (256 × 128),
hence we were able to time-step the dynamics of 1024 differ-
ent scenes simultaneously. A single prediction step took on
average 2.51995s per batch, the time stepping of 1024 scenes
for 800 steps thus amounts to 33.6min. Consequently, the
time integration of a single scene for 800 steps took 1.97s,
while the FEM solution without post-processing took 248s.
In contrast to physical simulations, the inference time of neu-
ral networks does not depend on the shape of the domain or
the complexity of the physics. To compute more realistic
scenes of larger size, parallel predictions (i.e. in the same
batch) can be carried out on segments of the scene and then

123

Computational Mechanics (2023) 71:1227–1249 1243

need to be re-combined into one global scene. The compu-
tational efforts increase linearly with the domain size.

Wewould like to avoid stressing the role of computational
benefits, as these clearly depend on hardware, use-case, and
multiple other effects. To reduce the offline costs related with
setting up the proposed Up-Net architecture, we make the
source code freely available for the interested reader and user.

5 Conclusion

The method proposed in this work sets out to overcome
some limitations of existing approaches to time stepping of
parameterized spatio-temporal dynamics using purely data-
driven techniques. Particularly, the Up-Net architecture is
designed for fusing qualitatively different field variables,
thereby allowing for large generalization potential and deep
representation learning. Four distinct advantages of the pro-
posed neural architecture were identified in this work.

Firstly, our method does not require any a priori knowl-
edge about a mathematical description of the underlying first
principles, and hence is a generic and data-centric approach.
Then, the method is designed for long-term predictions
through iterative self-feeding. Furthermore, domain parame-
terizations, such as material inhomogeneities, are considered
explicitly by the proposed method, which also enforces
(potentially time-varying) boundary conditions. Last but not
least, the method is making use of the adaptivity property of
fully convolutional networks: training can be performed on
arbitrarily shaped domains of arbitrary spatial resolution (e.g.
128×128). Network re-training is not required for inference
on differently shaped geometries at other resolutions (e.g.
512× 1024) or at other process parameterizations. Hence, a
once-trained network can be used to compute the time evolu-
tion of many different scenes (parameterization, size, shape)
given that the underlying physics are the same. In future stud-
ies, a priori physical knowledge can be introduced through
specialized convolutional kernels that represent temporal and
spatial derivatives.

On the example of the two-dimensional universal wave
and heat equations, our studies indicate superior prediction
quality of the proposed Up-Net architecture over established
encoder–decoder and U-Net architectures of same model
complexity, confirming the results of [29]. Exceptionally
large data sets of numerical simulations are used for excessive
model training. The Up-Net’s superior generalization prop-
erty to significantly different scenes in terms of size, shape
and boundary conditions is shown. Long-term time stepping
experiments indicates howpurely data-driven flowmapmod-
els canmake accurate predictions of time-dependent physics.
In contrast to classical numerical schemes, inference time is
not a function of the complexity of the observed physics for
the data-driven model. The offline costs for model training

can thus be compensated by very low online costs during
model inference. The novel Up-Net methodology proposed
can be regarded as a starting point for the investigation of
more complex wave, diffusion as well as flow processes
governed by nonlinearity and turbulence [45,46]. It is there-
fore a scheme which complements the recent progress in the
development of data-driven techniques in fluid dynamics and
physical oceanography [47,48].

Note on videos and code

Additional videos of the model prediction are available, see
https://github.com/TUHH-DYN/DeepStep. The source code
for replicating the data generation, model training and model
validation is accessible through https://github.com/TUHH-
DYN/DeepStep.

Acknowledgements J. Ohlsen was supported by the Hamburg Univer-
sity of Technology I3 initiative (funding IDT-LP-E01-WTM-1801-02).

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Data generation

Appendix A.1: Simulation environment

Training and validation datasets are generated using the open
source computing platform FEniCS [44] for numerical simu-
lations. At first, the domain geometry is defined by a number
of primitive shapes which are then combined using the set
operations union, intersection, and difference.
The domain is then discretized using a tri-mesh, while also
respecting additional sub domains, utilized for defining spa-
tial parameterization. Triangular elements with linear basis
functions are employed (called P1 elements in FEniCS).
Finite element computations are performed using the build-
in GMRES solver and incomplete LU factorization (ilu)
for preconditioning. The implicit Euler method is used for
time integration, thereby the differential equation is solved
at all mesh nodes. Finally, linear interpolation is used to
generate datasets defined on Cartesian grids. One crucial

123

https://github.com/TUHH-DYN/DeepStep
https://github.com/TUHH-DYN/DeepStep
https://github.com/TUHH-DYN/DeepStep
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1244 Computational Mechanics (2023) 71:1227–1249

Fig. 10 Computational mesh (26,874 mesh nodes) used for the finite element computations in FEniCS and Cartesian interpolation grid (256×128)
for validation scene (h) of the wave equation case

parameter when performing such numerical computations,
but also when performing data-driven predictions, is the
choice of time increments �t . In numerical fluid dynam-
ics, the Courant-Friedrichs-Lewy (CFL) number CFL = c�t

�x
states the number of cells of length �x that an informa-
tion of speed c can travel in one time increment �t . While
implicit Euler schemesmay tolerateCFLnumbers larger than
1 to ensure numerical stability, the explicit Euler integration
scheme is only stable for CFL numbers smaller than 1. As
the deep learning time stepper resembles an explicit Euler
scheme, we chose time increments �t , such that the CFL
numbers ensure numerical stability in all configurations and
application cases investigated throughout the course of this
work. Future work needs to study the effect of time step size
on the prediction performance in detail. Figure10 illustrates
the computational mesh (mesh convergence obtained) used
for the validation scene (h) of the wave equation case.

Appendix A.2: Validation scene realizations

Figure 11 displays more examples for the validation cases
used for both experiments in this work. While the domain
shape is the same for all realizations of the four validation
cases, the field initializationU0 and domain parameterization
c are varied. That way, many different validation cases are
generated for each domain shape, out of which only four
exemplary cases are displayed here for each experiment.

Appendix B: Model configurations

Two types of baseline models are considered for per-
formance comparisons: first, fully convolutional encoder–
decoder (ED) models are set up to mimic the structure of the
proposed Up-Nets but featuring only a single encoding path
and no skip connections. Second, conventional U-Nets are
set up that have the same structure as the respective Up-Net,
but only featuring a single encoder path. Owing to the single
input layer of both baselinemodels, the different input tensors
of the Up-Net are stacked into one tensor along the channel
direction. For example, the input to the wave equation case
has five channels (three fields, the domain mask, the domain
parameterization) for the baseline models. For each baseline
model we chose two configurations, which solely differ in
the number filters at each stage. One configuration features
a constant number of filters, while the other configurations
feature a cascade of doubling filters per stage, as proposed
by Ronneberger et al. [10]. The general structure of encoder

123

Computational Mechanics (2023) 71:1227–1249 1245

Fig. 11 Exemplary realizations of the validation cases for the wave
equation studies (a) and the heat equation studies (b). The top panel
shows the field initialization, the middle panel shows the domain mask,

and the bottom panel shows the domain parameterization in terms of
wave speed c and heat conductivity c, respectively

Table 4 Overview of baseline
and proposed model
configurations for the
experiments presented in this
work

Case Model Architecture p Stages f0 f1 f2 nθ Training time (h)

Wave eq U3
64 Up-Net 3 3 64 64 64 991, 617 175

Wave eq U3
29,×2 Up-Net 3 3 29 58 116 997, 746 115

Heat eq U3
64 Up-Net 3 3 64 64 64 991, 617 95

Wave eq U96 U-Net 1 3 96 96 96 991, 681 148

Wave eq U46,×2 U-Net 1 3 46 92 184 999, 857 102

Heat eq U96 U-Net 1 3 96 96 96 991, 681 77

Wave eq UED
106 ED 1 3 106 106 106 1, 006, 153 141

Wave eq UED
48,×2 ED 1 3 48 96 192 984, 865 95

Heat eq UED
106 ED 1 3 106 106 106 1, 006, 153 75

f0, f1 and f2 denote the number of filters at the three encoding/decoding stages of the neural architectures,
p denotes the number of encoder paths, and nθ denotes the number of trainable parameters

and decoder paths is equivalent for all architectures consid-
ered in this work: Each stage of the encoder is comprised of
two convolutional layers (3 × 3 kernels) followed by a max
pooling layer that reduces the size of the feature map by a
factor of two, while the number of filters fk is doubled per
stage k or kept constant depending on the respective config-
uration: 2· (conv (3 × 3, f0 filters) + ReLU) + max pooling
(2× 2) + 2· (conv (3× 3, f1 filters) + ReLU) + max pooling
(2 × 2) + 2· (conv (3× 3, f2 filters) + ReLU). Analogously,
the decoder features 2· (conv (3 × 3, f2 filters) + ReLU)

+ upconv(3 × 3, f1 filters) + 2· (conv (3 × 3, 128 filters) +
ReLU) + upconv(3×3, f0 filters) + 2· (conv (3×3, f0 filters)
+ ReLU) + upconv(3 × 3, f0 filters) + conv(1 × 1, 1 filter,
linear activation). We use adam as optimizer (parameters
β1 = 0.9, β2 = 0.999, ε = 1 × 10−7) and an exponentially
decaying learning rate α(epoch) = αbase · e−k·epoch to train
the networks. Table 4 lists all model configurations used in
this work.

123

1246 Computational Mechanics (2023) 71:1227–1249

Appendix C: Mean field quantity offsets

During our studies we found indications for a link of the
mean error of the means (MEM) error metric, see Eq. (7),
and the long-term prediction capabilities of the models. A
largeMEM indicates an incorrect shift of thewhole predicted
field towards larger or smaller values, i.e. a global offset. We
found that this type of shifting often occurs for successive
time steps, thus leading to an accumulation of offset errors in
long-term predictions. Figure12 shows the evolution of the
MEM throughout the training process of the wave equation
problem, as described in Sect. 4.1. Interestingly, the value
of the MEM evaluated on the validation datasets oscillates
quite heavily, compared to the validation loss shown in Fig. 3.
We found however, that the oscillations diminish when the
model is trained with very small learning rates and settle to
the lower end of the oscillation range. This strategy can help
to train a model in a way such that it exhibits a low MEM
particularly for unseen datasets and thus additional better
long-term prediction capabilities.

Appendix D: Additional results

The following paragraphs list additional results that support
the findings reported in the main part of this work.

Appendix D.1:Wave equation case: single-step
predictions

Table 5 reports the validation loss, MSE, MAE and MEM
error metrics for a second training run for all models con-
sidered in the wave equation case study. This independent
training is performed to confirm the results reported in
Sect. 4.1. Again, the proposed Up-Net architectures outper-
form the baselinemodels by a significant amountwith respect
to every error metric.

Appendix D.2:Wave equation case: long-term
prediction studies

Figure 13 depicts the long-term prediction error accumula-
tion of all models for the validation cases (g-i) of the wave
equation scenes, that were not reported in Sect. 4.1.4. Again,
long-termprediction are initialized from several time instants
and run for 100 steps. It can be observed that the Up-Net
models outperform the baseline models in almost all cases

Fig. 12 Evolution of the mean error of the means (MEM) of the baseline models UED and U compared to the proposed U3-Net model U3 evaluated
on the wave equation during training. The top panel shows the MEM evaluated on the validation data, the bottom panel shows the MEM evaluated
on the training data

123

Computational Mechanics (2023) 71:1227–1249 1247

Table 5 Second training
process: Error metrics of
single-step predictions for
baseline and proposed model
configurations evaluated within
the respective domains � of the
four validation cases for the
wave equation data

Model Architecture Val. loss MSE MAE MEM

U3
64 Up-Net 7.45 × 10−8 1.30 × 10−9 6.24 × 10−6 8.78 × 10−7

U3
29,×2 Up-Net 7.58 × 10−8 1.24 × 10−9 6.42 × 10−6 6.88 × 10−7

U96 U-Net 4.88 × 10−7 6.49 × 10−9 9.04 × 10−6 1.06 × 10−6

U46,×2 U-Net 5.03 × 10−7 7.20 × 10−9 9.59 × 10−6 1.42 × 10−6

UED
106 ED 3.16 × 10−6 3.88 × 10−8 2.90 × 10−5 2.38 × 10−6

UED
48,×2 ED 3.49 × 10−6 4.46 × 10−8 3.49 × 10−5 5.56 × 10−6

The validation loss is evaluated on sample-wise normalized datasets and thus differs from the MSE which is
evaluated on raw datasets (as are the mean absolute error MAE and the mean error of the means MEM (see 1)

Fig. 13 Comparison of long-term predictions using the recursive time
stepping scheme, starting at time steps 50, 150, 250, 350, 450, 550 and
650 of validation cases (g) to (i), shown in panels (a) to (c), and eval-

uated for configurations of the ED and the classical U-Net architecture
each as well as two model-configurations according to the proposed
Up-Net architecture

123

1248 Computational Mechanics (2023) 71:1227–1249

Table 6 Comparison of U3-Net, U-Net and fully convolutional encoder–decoder models in terms of the domain adaptive mean absolute error
(MAE)

Model MAE10 MAE100
Mean ± stdev Min Max Mean ± stdev Min Max

U3
64 8.87 ± 4.96 × 10−3 3.18 × 10−3 1.82 × 10−2 1.34 ± 0.90 × 10−2 6.72 × 10−3 3.47 × 10−2

U96 5.03 ± 2.29 × 10−3 1.49 × 10−3 9.04 × 10−3 1.27 ± 1.06 × 10−2 2.46 × 10−3 3.13 × 10−2

UED
106 5.37 ± 2.44 × 10−3 2.60 × 10−3 9.74 × 10−3 6.14 ± 3.47 × 10−3 2.21 × 10−3 1.14 × 10−2

MAE10 and MAE100 denote the mean absolute error computed from self-feeding predictions after 10 and respectively 100 time steps. The self-
feeding long-term predictions are performed for the four validation cases outlined in Sect. 4.2.1 and tstart ∈ {0.0, 0.05}. The table shows mean and
standard deviations, as well as the smallest and greatest errors

for almost all time steps. Again, the model with a constant
number of feature maps U3

64 outperforms the same architec-
ture using cascading feature maps.

Appendix D.3: Heat equation case: long-term
prediction studies

Table 6 reports the prediction errors of all models for self-
feeding long-term predictions. Particularly, the error after 10
prediction steps and after 100 prediction steps are reported
averaged over all validation sets.

References

1. Mathews JH (1992) Numerical methods for mathematics, science
and engineering, vol 10. Prentice-Hall International

2. Bezanson J, EdelmanA,Karpinski S, ShahVB (2017) Julia: a fresh
approach to numerical computing. SIAM Rev 59(1):65–98

3. Schönherr M, Kucher K, Geier M, Stiebler M, Freudiger S,
Krafczyk M (2011) Multi-thread implementations of the lattice
Boltzmann method on non-uniform grids for CPUs and GPUs.
Comput Math Appl 61(12):3730–3743. https://doi.org/10.1016/
j.camwa.2011.04.012. Proceedings of ICMMES-09 mesoscopic
methods for engineering and science

4. Klein M, Dudek M, Clauss GF, Ehlers S, Behrendt J, Hoffmann N,
Onorato M (2020) On the deterministic prediction of water waves.
Fluids 5(1):9. https://doi.org/10.3390/fluids5010009

5. Virieux J, Operto S, Ben-Hadj-Ali H, Brossier R, Etienne V, Sour-
bier F, Giraud L, Haidar A (2009) Seismic wave modeling for
seismic imaging. Lead Edge 28(5):538–544. https://doi.org/10.
1190/1.3124928

6. Ravikumar N, Noble C, Cramphorn E, Taylor Z (2015) A consti-
tutive model for ballistic gelatin at surgical strain rates. J Mech
Behav Biomed Mater 47:87–94. https://doi.org/10.1016/j.jmbbm.
2015.03.011

7. Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes J, Emelianov
SY (1998) Shear wave elasticity imaging: a new ultrasonic tech-
nology of medical diagnostics. Ultrasound Med Biol 24(9):1419–
1435. https://doi.org/10.1016/s0301-5629(98)00110-0

8. Beira MJ, Sebastião PJ (2021) A differential equations model-
fitting analysis of COVID-19 epidemiological data to explain
multi-wave dynamics. Sci Rep. https://doi.org/10.1038/s41598-
021-95494-6

9. Krizhevsky Alex, Sutskever I, Hinton GE (2012) Imagenet clas-
sification with deep convolutional neural networks. In: Pereira F,
Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural

information processing systems, vol 25. Curran Associates, Inc, pp
1097–1105

10. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional net-
works for biomedical image segmentation, In: NavabN,Hornegger
J, Wells WM, Frangi AF (Eds.), Medical image computing and
computer-assisted intervention—MICCAI 2015, vol 9351 of Lec-
ture Notes in Computer Science. Springer, Cham, pp. 234–241.
https://doi.org/10.1007/978-3-319-24574-4_28

11. RaissiM, Karniadakis GE (2018) Hidden physicsmodels: machine
learning of nonlinear partial differential equations. J Comput Phys
357:125–141. https://doi.org/10.1016/j.jcp.2017.11.039

12. Raissi M (2018) Forward–backward stochastic neural networks:
deep learning of high-dimensional partial differential equations.
https://arxiv.org/pdf/1804.07010

13. Raissi M, Perdikaris P, Karniadakis GE (2018) Multistep neural
networks for data-driven discovery of nonlinear dynamical sys-
tems. https://arxiv.org/pdf/1801.01236

14. Stender M, Ohlsen J (2022) DeepStep: v1.0.0, Zenodo. https://doi.
org/10.5281/zenodo.6244753

15. RaissiM (2018)Deephiddenphysicsmodels: deep learning of non-
linear partial differential equations. J Mach Learn Res 19(25):1–24

16. Raissi M, Perdikaris P, Karniadakis G (2019) Physics-informed
neural networks: a deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equa-
tions. J Comput Phys 378:686–707. https://doi.org/10.1016/j.jcp.
2018.10.045

17. Raissi M, Yazdani A, Karniadakis GE (2020) Hidden fluid
mechanics: learning velocity and pressure fields from flow visual-
izations. Science 367(6481):1026–1030. https://doi.org/10.1126/
science.aaw4741

18. CybenkoG (1989)Approximation by superpositions of a sigmoidal
function. Math Control Signals Syst 2(4):303–314. https://doi.org/
10.1007/BF02551274

19. Brunton SL, Proctor JL, Kutz JN (2016) Discovering governing
equations fromdata by sparse identification of nonlinear dynamical
systems. Proc Natl Acad Sci USA 113(15):3932–3937

20. Rudy SH, Brunton SL, Proctor JL, Kutz JN (2017) Data-driven
discovery of partial differential equations. Sci Adv 3(4):e1602614.
https://doi.org/10.1126/sciadv.1602614

21. WangW-X,YangR, LaiY-C,KovanisV,Grebogi C (2011) Predict-
ing catastrophes in nonlinear dynamical systems by compressive
sensing. Phys Rev Lett 106(15):154101. https://doi.org/10.1103/
PhysRevLett.106.154101

22. Brunton SL, Brunton BW, Proctor JL, Kaiser E, Kutz JN (2017)
Chaos as an intermittently forced linear system. Nat Commun
8(1):19. https://doi.org/10.1038/s41467-017-00030-8

23. Rudy S, Alla A, Brunton SL, Kutz JN (2019) Data-driven identi-
fication of parametric partial differential equations. SIAM J Appl
Dyn Syst 18(2):643–660. https://doi.org/10.1137/18M1191944

123

https://doi.org/10.1016/j.camwa.2011.04.012
https://doi.org/10.1016/j.camwa.2011.04.012
https://doi.org/10.3390/fluids5010009
https://doi.org/10.1190/1.3124928
https://doi.org/10.1190/1.3124928
https://doi.org/10.1016/j.jmbbm.2015.03.011
https://doi.org/10.1016/j.jmbbm.2015.03.011
https://doi.org/10.1016/s0301-5629(98)00110-0
https://doi.org/10.1038/s41598-021-95494-6
https://doi.org/10.1038/s41598-021-95494-6
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.jcp.2017.11.039
https://arxiv.org/pdf/1804.07010
https://arxiv.org/pdf/1801.01236
https://doi.org/10.5281/zenodo.6244753
https://doi.org/10.5281/zenodo.6244753
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1103/PhysRevLett.106.154101
https://doi.org/10.1103/PhysRevLett.106.154101
https://doi.org/10.1038/s41467-017-00030-8
https://doi.org/10.1137/18M1191944

Computational Mechanics (2023) 71:1227–1249 1249

24. Long Z, Lu Y, Dong B (2019) PDE-Net 2.0: learning PDEs from
data with a numeric-symbolic hybrid deep network. J Comput Phys
399:108925. https://doi.org/10.1016/j.jcp.2019.108925

25. FarimaniAB,Gomes J, PandeVS (2017)Deep learning the physics
of transport phenomena. arXiv preprint arXiv:1709.02432

26. Sharma R, Farimani AB, Gomes J, Eastman P, Pande V (2018)
Weakly-supervised deep learning of heat transport via physics
informed loss. arXiv:1807.11374

27. Thuerey N, Weißenow K, Prantl L, Hu X (2020) Deep learning
methods for Reynolds-averaged Navier-Stokes simulations of air-
foil flows.AIAAJ58(1):25–36. https://doi.org/10.2514/1.J058291

28. Chen J, Viquerat J, Hachem E (2019) U-net architectures for
fast prediction of incompressible laminar flows. arXiv preprint
arXiv:1910.13532

29. Eichinger M, Heinlein A, Klawonn A (2022) Surrogate convo-
lutional neural network models for steady computational fluid
dynamics simulations. Electron Trans Numer Anal 56:235–255.
https://doi.org/10.1533/etna_col56s235

30. Sanchez-Gonzalez A, Godwin J, Pfaff T, Ying R, Leskovec J,
Battaglia PW (2020) Learning to simulate complex physics with
graph networks. arXiv:2002.09405

31. Guo X, Li W, Iorio F (2016) Convolutional neural networks for
steady flow approximation. In: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and
datamining,KDD’16,Association forComputingMachinery,New
York, pp 481–490. https://doi.org/10.1145/2939672.2939738

32. Sorteberg WE, Garasto S, Cantwell CC, Bharath AA (2020)
Approximating the solutionof surfacewavepropagationusingdeep
neural networks. In: Oneto L, Navarin N, Sperduti A, Anguita D
(eds) Recent advances in big data and deep learning. Springer,
Cham, pp 246–256

33. Kim B, Azevedo VC, Thuerey N, Kim T, Gross M, Solenthaler B
(2019) Deep fluids: a generative network for parameterized fluid
simulations. In: Computer graphics forum, vol 38.Wiley, pp 59–70

34. Wiewel S, Becher M, Thuerey N (2019) Latent space physics:
towards learning the temporal evolution of fluid flow. Comput Gr
Forum 38(2):71–82. https://doi.org/10.1111/cgf.13620

35. Liu Y, Kutz JN, Brunton SL (2020) Hierarchical deep learning
of multiscale differential equation time-steppers. arXiv preprint
arXiv:2008.09768

36. Tompson J, Schlachter K, Sprechmann P, Perlin K (2017) Accel-
erating Eulerian fluid simulation with convolutional networks. In:
International conference on machine learning, PMLR, pp 3424–
3433

37. Moseley B, Markham B, Nissen-Meyer T (2020) Solving the
wave equationwith physics-informed deep learning. arXiv preprint
arXiv:2006.11894

38. Shelhamer E, Long J, Darrell T (2017). Fully convolutional net-
works for semantic segmentation. https://doi.org/10.1109/TPAMI.
2016.2572683

39. Fotiadis S, Pignatelli E, Valencia ML, Cantwell C, Storkey A,
Bharath AA (2020) Comparing recurrent and convolutional neural
networks for predicting wave propagation. arXiv:2002.08981

40. de Bézenac E, Pajot A, Gallinari P. Deep learning for phys-
ical processes: incorporating prior scientific knowledge. CoRR
abs/1711.07970. arXiv:1711.07970

41. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep
network training by reducing internal covariate shift. In: Interna-
tional conference on machine learning, PMLR, pp 448–456

42. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O
(2016) 3d U-Net: learning dense volumetric segmentation from
sparse annotation, In: International conference on medical image
computing and computer-assisted intervention. Springer, pp 424–
432

43. Whitham GB (2011) Linear and nonlinear waves. Wiley
44. Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A,

Richardson C, Ring J, Rognes ME, Wells GN (2015) The Fenics
project version 1.5, Archive of Numerical Software 3(100). https://
doi.org/10.11588/ans.2015.100.20553

45. Närhi M, Salmela L, Toivonen J, Billet C, Dudley JM, Genty G
(2018)Machine learning analysis of extreme events in optical fibre
modulation instability. Nat Commun 9(1):1–11

46. Aksamit NO, Sapsis T, Haller G (2020) Machine-learning
mesoscale and submesoscale surface dynamics from Lagrangian
ocean drifter trajectories. J Phys Oceanogr 50(5):1179–1196

47. Vlachas PR, Pathak J, Hunt BR, Sapsis TP, Girvan M, Ott E,
Koumoutsakos P (2020) Backpropagation algorithms and reser-
voir computing in recurrent neural networks for the forecasting of
complex spatiotemporal dynamics. Neural Netw 126:191–217

48. Chu B, FarazmandM (2021) Data-driven prediction of multistable
systems from sparse measurements. Chaos Interdiscip J Nonlinear
Sci 31(6):063118

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.jcp.2019.108925
http://arxiv.org/abs/1709.02432
http://arxiv.org/abs/1807.11374
https://doi.org/10.2514/1.J058291
http://arxiv.org/abs/1910.13532
https://doi.org/10.1533/etna_col56s235
http://arxiv.org/abs/2002.09405
https://doi.org/10.1145/2939672.2939738
https://doi.org/10.1111/cgf.13620
http://arxiv.org/abs/2008.09768
http://arxiv.org/abs/2006.11894
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/TPAMI.2016.2572683
http://arxiv.org/abs/2002.08981
http://arxiv.org/abs/1711.07970
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.11588/ans.2015.100.20553

	Up-Net: a generic deep learning-based time stepper for parameterized spatio-temporal dynamics
	Abstract
	1 Introduction
	2 State-of-the-art and related work
	3 Methodology
	3.1 Encoder–decoder model architecture
	3.2 Up-Net: data fusion through multi-domain inputs
	3.3 Up-Net design considerations
	3.4 Recursive time stepping

	4 Results
	4.1 2D wave equation
	4.1.1 Data generation
	4.1.2 Model setup and training methodology
	4.1.3 Single-step predictions
	4.1.4 Long-term predictions
	4.1.5 Out-of-distribution generalization properties

	4.2 Heat equation
	4.2.1 Data generation
	4.2.2 Model setup
	4.2.3 Predictions

	4.3 Computational efforts

	5 Conclusion
	Note on videos and code

	Acknowledgements
	Appendix A: Data generation
	Appendix A.1: Simulation environment
	Appendix A.2: Validation scene realizations

	Appendix B: Model configurations
	Appendix C: Mean field quantity offsets
	Appendix D: Additional results
	Appendix D.1: Wave equation case: single-step predictions
	Appendix D.2: Wave equation case: long-term prediction studies
	Appendix D.3: Heat equation case: long-term prediction studies

	References

