1,912 research outputs found

    Background Simulations of the Wide Field Imager of the ATHENA X-Ray Observatory

    Full text link
    The ATHENA X-ray Observatory-IXO is a planned multinational orbiting X-ray observatory with a focal length of 11.5m. ATHENA aims to perform pointed observations in an energy range from 0.1 keV to 15 keV with high sensitivity. For high spatial and timing resolution imaging and spectroscopic observations the 640x640 pixel^2 large DePFET-technology based Wide field Imager (WFI) focal plane detector, providing a field of view of 18 arcsec will be the main detector. Based on the actual mechanics, thermal and shielding design we present estimates for the WFI cosmic ray induced background obtained by the use of Monte-Carlo simulations and possible background reduction measures.Comment: IEEE NSS MIC Conference 2011, Valencia, Spai

    Validation of Geant4-based Radioactive Decay Simulation

    Full text link
    Radioactive decays are of concern in a wide variety of applications using Monte-Carlo simulations. In order to properly estimate the quality of such simulations, knowledge of the accuracy of the decay simulation is required. We present a validation of the original Geant4 Radioactive Decay Module, which uses a per-decay sampling approach, and of an extended package for Geant4-based simulation of radioactive decays, which, in addition to being able to use a refactored per-decay sampling, is capable of using a statistical sampling approach. The validation is based on measurements of calibration isotope sources using a high purity Germanium (HPGe) detector; no calibration of the simulation is performed. For the considered validation experiment equivalent simulation accuracy can be achieved with per-decay and statistical sampling

    Radioactive Decays in Geant4

    Full text link
    The simulation of radioactive decays is a common task in Monte-Carlo systems such as Geant4. Usually, a system either uses an approach focusing on the simulations of every individual decay or an approach which simulates a large number of decays with a focus on correct overall statistics. The radioactive decay package presented in this work permits, for the first time, the use of both methods within the same simulation framework - Geant4. The accuracy of the statistical approach in our new package, RDM-extended, and that of the existing Geant4 per-decay implementation (original RDM), which has also been refactored, are verified against the ENSDF database. The new verified package is beneficial for a wide range of experimental scenarios, as it enables researchers to choose the most appropriate approach for their Geant4-based application

    Coulomb plasmas in outer envelopes of neutron stars

    Get PDF
    Outer envelopes of neutron stars consist mostly of fully ionized, strongly coupled Coulomb plasmas characterized by typical densities about 10^4-10^{11} g/cc and temperatures about 10^4-10^9 K. Many neutron stars possess magnetic fields about 10^{11}-10^{14} G. Here we briefly review recent theoretical advances which allow one to calculate thermodynamic functions and electron transport coefficients for such plasmas with an accuracy required for theoretical interpretation of observations.Comment: 4 pages, 2 figures, latex2e using cpp2e.cls (included). Proc. PNP-10 Workshop, Greifswald, Germany, 4-9 Sept. 2000. Accepted for publication in Contrib. Plasma Phys. 41 (2001) no. 2-

    Capability of Neutrophils to Form NETs Is Not Directly Influenced by a CMA-Targeting Peptide

    Get PDF
    During inflammatory reaction, neutrophils exhibit numerous cellular and immunological functions, notably the formation of neutrophil extracellular traps (NETs) and autophagy. NETs are composed of decondensed chromatin fibers coated with various antimicrobial molecules derived from neutrophil granules. NETs participate in antimicrobial defense and can also display detrimental roles and notably trigger some of the immune features of systemic lupus erythematosus (SLE) and other autoimmune diseases. Autophagy is a complex and finely regulated mechanism involved in the cell survival/death balance that may be connected to NET formation. To shed some light on the connection between autophagy and NET formation, we designed a number of experiments in human neutrophils and both in normal and lupus-prone MRL/lpr mice to determine whether the synthetic peptide P140, which is capable of selectively modulating chaperone-mediated autophagy (CMA) in lymphocytes, could alter NET formation. P140/Lupuzor™ is currently being evaluated in phase III clinical trials involving SLE patients. Overall our in vitro and in vivo studies established that P140 does not influence NET formation, cytokine/chemokine production, or CMA in neutrophils. Thus, the beneficial effect of P140/Lupuzor™ in SLE is apparently not directly related to modulation of neutrophil function

    Bromodomain Protein Inhibitors Reorganize the Chromatin of Synovial Fibroblasts

    Full text link
    Bromodomain- and extra-terminal domain (BET) proteins are epigenetic reader proteins that regulate transcription of their target genes by binding to acetylated histone side chains. Small molecule inhibitors, such as I-BET151, have anti-inflammatory properties in fibroblast-like synoviocytes (FLS) and in animal models of arthritis. Here, we investigated whether BET inhibition can also affect the levels of histone modifications, a novel mechanism underlying BET protein inhibition. On the one hand, FLSs were treated with I-BET151 (1 µM) for 24 h in absence and presence of TNF. On the other hand, FLSs were washed with PBS after 48 h of I-BET151 treatment, and the effects were measured 5 days after I-BET151 treatment or after an additional 24 h stimulation with TNF (5 d + 24 h). Mass spectrometry analysis indicated that I-BET151 induced profound changes in histone modifications, with a global reduction in acetylation on different histone side chains 5 days after treatment. We confirmed changes on acetylated histone side chains in independent samples by Western blotting. I-BET151 treatment reduced mean TNF-induced levels of total acetylated histone 3 (acH3), H3K18ac, and H3K27ac. In line with these changes, the TNF-induced expression of BET protein target genes was suppressed 5 d after I-BET151 treatment. Our data indicate that BET inhibitors not only prevent the reading of acetylated histones but directly influence overall chromatin organization, in particular after stimulation with TNF

    Bromodomain Protein Inhibitors Reorganize the Chromatin of Synovial Fibroblasts.

    Get PDF
    Bromodomain- and extra-terminal domain (BET) proteins are epigenetic reader proteins that regulate transcription of their target genes by binding to acetylated histone side chains. Small molecule inhibitors, such as I-BET151, have anti-inflammatory properties in fibroblast-like synoviocytes (FLS) and in animal models of arthritis. Here, we investigated whether BET inhibition can also affect the levels of histone modifications, a novel mechanism underlying BET protein inhibition. On the one hand, FLSs were treated with I-BET151 (1 µM) for 24 h in absence and presence of TNF. On the other hand, FLSs were washed with PBS after 48 h of I-BET151 treatment, and the effects were measured 5 days after I-BET151 treatment or after an additional 24 h stimulation with TNF (5 d + 24 h). Mass spectrometry analysis indicated that I-BET151 induced profound changes in histone modifications, with a global reduction in acetylation on different histone side chains 5 days after treatment. We confirmed changes on acetylated histone side chains in independent samples by Western blotting. I-BET151 treatment reduced mean TNF-induced levels of total acetylated histone 3 (acH3), H3K18ac, and H3K27ac. In line with these changes, the TNF-induced expression of BET protein target genes was suppressed 5 d after I-BET151 treatment. Our data indicate that BET inhibitors not only prevent the reading of acetylated histones but directly influence overall chromatin organization, in particular after stimulation with TNF

    Capability of Neutrophils to Form NETs Is Not Directly Influenced by a CMA-Targeting Peptide

    Get PDF
    During inflammatory reaction, neutrophils exhibit numerous cellular and immunological functions, notably the formation of neutrophil extracellular traps (NETs) and autophagy. NETs are composed of decondensed chromatin fibers coated with various antimicrobial molecules derived from neutrophil granules. NETs participate in antimicrobial defense and can also display detrimental roles and notably trigger some of the immune features of systemic lupus erythematosus (SLE) and other autoimmune diseases. Autophagy is a complex and finely regulated mechanism involved in the cell survival/death balance that may be connected to NET formation. To shed some light on the connection between autophagy and NET formation, we designed a number of experiments in human neutrophils and both in normal and lupus-prone MRL/lpr mice to determine whether the synthetic peptide P140, which is capable of selectively modulating chaperone-mediated autophagy (CMA) in lymphocytes, could alter NET formation. P140/Lupuzor™ is currently being evaluated in phase III clinical trials involving SLE patients. Overall our in vitro and in vivo studies established that P140 does not influence NET formation, cytokine/chemokine production, or CMA in neutrophils. Thus, the beneficial effect of P140/Lupuzor™ in SLE is apparently not directly related to modulation of neutrophil function
    • …
    corecore