27,439 research outputs found

    A low-loss photonic silica nanofiber for higher-order modes

    Full text link
    Optical nanofibers confine light to subwavelength scales, and are of interest for the design, integration, and interconnection of nanophotonic devices. Here we demonstrate high transmission (> 97%) of the first family of excited modes through a 350 nm radius fiber, by appropriate choice of the fiber and precise control of the taper geometry. We can design the nanofibers so that these modes propagate with most of their energy outside the waist region. We also present an optical setup for selectively launching these modes with less than 1% fundamental mode contamination. Our experimental results are in good agreement with simulations of the propagation. Multimode optical nanofibers expand the photonic toolbox, and may aid in the realization of a fully integrated nanoscale device for communication science, laser science or other sensing applications.Comment: 12 pages, 5 figures, movies available onlin

    An analytical and experimental investigation of resistojet plumes

    Get PDF
    As a part of the electrothermal propulsion plume research program at the NASA Lewis Research Center, efforts have been initiated to analytically and experimentally investigate the plumes of resistojet thrusters. The method of G.A. Simons for the prediction of rocket exhaust plumes is developed for the resistojet. Modifications are made to the source flow equations to account for the increased effects of the relatively large nozzle boundary layer. Additionally, preliminary mass flux measurements of a laboratory resistojet using CO2 propellant at 298 K have been obtained with a cryogenically cooled quartz crystal microbalance (QCM). There is qualitative agreement between analysis and experiment, at least in terms of the overall number density shape functions in the forward flux region

    Application of advanced on-board processing concepts to future satellite communications systems

    Get PDF
    An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development

    Dispersive Photon Blockade in a Superconducting Circuit

    Full text link
    Mediated photon-photon interactions are realized in a superconducting coplanar waveguide cavity coupled to a superconducting charge qubit. These non-resonant interactions blockade the transmission of photons through the cavity. This so-called dispersive photon blockade is characterized by measuring the total transmitted power while varying the energy spectrum of the photons incident on the cavity. A staircase with four distinct steps is observed and can be understood in an analogy with electron transport and the Coulomb blockade in quantum dots. This work differs from previous efforts in that the cavity-qubit excitations retain a photonic nature rather than a hybridization of qubit and photon and provides the needed tolerance to disorder for future condensed matter experiments.Comment: 4 pages, 3 figure

    Ultrahigh Transmission Optical Nanofibers

    Full text link
    We present a procedure for reproducibly fabricating ultrahigh transmission optical nanofibers (530 nm diameter and 84 mm stretch) with single-mode transmissions of 99.95 ± \pm 0.02%, which represents a loss from tapering of 2.6  × \,\times \, 10−5^{-5} dB/mm when normalized to the entire stretch. When controllably launching the next family of higher-order modes on a fiber with 195 mm stretch, we achieve a transmission of 97.8 ±\pm 2.8%, which has a loss from tapering of 5.0  × \,\times \, 10−4^{-4} dB/mm when normalized to the entire stretch. Our pulling and transfer procedures allow us to fabricate optical nanofibers that transmit more than 400 mW in high vacuum conditions. These results, published as parameters in our previous work, present an improvement of two orders of magnitude less loss for the fundamental mode and an increase in transmission of more than 300% for higher-order modes, when following the protocols detailed in this paper. We extract from the transmission during the pull, the only reported spectrogram of a fundamental mode launch that does not include excitation to asymmetric modes; in stark contrast to a pull in which our cleaning protocol is not followed. These results depend critically on the pre-pull cleanliness and when properly following our pulling protocols are in excellent agreement with simulations.Comment: 32 pages, 10 figures, accepted to AIP Advance
    • …
    corecore