15,188 research outputs found

    Vegetable Forcing in Ohio

    Get PDF
    PDF pages: 3

    Herb and Spice Culture

    Get PDF

    Stability of Inhomogeneous Superstructures from Renormalized Mean-field Theory of the t--J Model

    Full text link
    Using the t--J model (which can also include Coulomb repulsion) and the ``plain vanilla'' renormalized mean-field theory of Zhang et al. (1988), stability of inhomogeneous 4a x 4a superstructures as those observed in cuprates superconductors around hole doping 1/8 is investigated. We find a non-uniform 4a x 4a bond order wave involving simultaneously small (~ 10^-2 t) inhomogeneous staggered plaquette currents as well as a small charge density modulation similar to pair density wave order. On the other hand, no supersolid phase involving a decoupling in the superconducting particle-particle channel is found.Comment: 4 page

    Low Saturation Intensities in Two-Photon Ultracold Collisions

    Get PDF
    We have observed violet photon emission resulting from energy-pooling collisions between ultracold Rb atoms illuminated by two colors of near-resonant infrared laser light. We have used this emission as a probe of doubly excited state ultracold collision dynamics. We have observed the lowest saturation intensity for light-induced ultracold collisions seen to date which we identify as due to depletion of incoming ground state flux. We have also varied the detuning of the lasers which allows us to clearly identify the effect of spontaneous emission and optical shielding

    Search for long lived heaviest nuclei beyond the valley of stability

    Full text link
    The existence of long lived superheavy nuclei (SHN) is controlled mainly by spontaneous fission and α\alpha-decay processes. According to microscopic nuclear theory, spherical shell effects at Z=114, 120, 126 and N=184 provide the extra stability to such SHN to have long enough lifetime to be observed. To investigate whether the so-called "stability island" could really exist around the above Z, N values, the α\alpha-decay half lives along with the spontaneous fission and β\beta-decay half lives of such nuclei are studied. The α\alpha-decay half lives of SHN with Z=102-120 are calculated in a quantum tunneling model with DDM3Y effective nuclear interaction using QαQ_\alpha values from three different mass formulae prescribed by Koura, Uno, Tachibana, Yamada (KUTY), Myers, Swiatecki (MS) and Muntian, Hofmann, Patyk, Sobiczewski (MMM). Calculation of spontaneous fission (SF) half lives for the same SHN are carried out using a phenomenological formula and compared with SF half lives predicted by Smolanczuk {\it et al}. Possible source of discrepancy between the calculated α\alpha-decay half lives of some nuclei and the experimental data of GSI, JINR-FLNR, RIKEN are discussed. In the region of Z=106-108 with N\sim 160-164, the β\beta-stable SHN 106268Sg162^{268}_{106}Sg_{162} is predicted to have highest α\alpha-decay half life (Tα3.2hrsT_\alpha \sim 3.2hrs) using QαQ_\alpha value from MMM. Interestingly, it is much greater than the recently measured TαT_\alpha (22s\sim 22s) of deformed doubly magic 108270Hs162^{270}_{108}Hs_{162} nucleus. A few fission-survived long-lived SHN which are either β\beta-stable or having large β\beta-decay half lives are predicted to exist near 294110184^{294}110_{184}, 293110183^{293}110_{183}, 296112184^{296}112_{184} and 298114184^{298}114_{184}. These nuclei might decay predominantly through α\alpha-particle emission.Comment: 14 pages, 6 figures, 1 tabl

    OH (1720 MHz) Masers: A Multiwavelength Study of the Interaction between the W51C Supernova Remnant and the W51B Star Forming Region

    Full text link
    We present a comprehensive view of the W51B HII region complex and the W51C supernova remnant (SNR) using new radio observations from the VLA, VLBA, MERLIN, JCMT, and CSO along with archival data from Spitzer, ROSAT, ASCA, and Chandra. Our VLA data include the first 400 cm (74 MHz) continuum image of W51 at high resolution (88 arcsec). The 400 cm image shows non-thermal emission surrounding the G49.2-0.3 HII region, and a compact source of non-thermal emission (W51B_NT) coincident with the previously-identified OH (1720 MHz) maser spots, non-thermal 21 and 90 cm emission, and a hard X-ray source. W51B_NT falls within the region of high likelihood for the position of TeV gamma-ray emission. Using the VLBA three OH (1720 MHz) maser spots are detected in the vicinity of W51B_NT with sizes of 60 to 300 AU and Zeeman effect magnetic field strengths of 1.5 to 2.2 mG. The multiwavelength data demonstrate that the northern end of the W51B HII region complex has been partly enveloped by the advancing W51C SNR and this interaction explains the presence of W51B_NT and the OH masers. This interaction also appears in the thermal molecular gas which partially encircles W51B_NT and exhibits narrow pre-shock (DeltaV 5 km/s) and broad post-shock (DeltaV 20 km/s) velocity components. RADEX radiative transfer modeling of these two components yield physical conditions consistent with the passage of a non-dissociative C-type shock. Confirmation of the W51B/W51C interaction provides additional evidence in favor of this region being one of the best candidates for hadronic particle acceleration known thus far.Comment: Accepted to Ap

    Tuberculosis Drug Resistance and Outcomes among Tuberculosis Inpatients in Lilongwe, Malawi

    Get PDF
    Setting/Objective: We evaluated clinical characteristics, yield of solid vs. liquid culture, polymerase chain reaction (PCR)-based drug-resistance profiles, and clinical outcomes of tuberculosis (TB) inpatients in Lilongwe, Malawi.Design: We enrolled adult patients admitted to the Bwaila TB Ward from Jan-Aug/2010. Evaluations included questionnaires, clinical exam, chest radiograph, HIV status, CD4 lymphocyte count, plasma HIVRNA and sputum analysis including Auramine-O stain, Lowenstein-Jensen (LJ) and Mycobacterial Growth Indicator Tube (MGIT) culture, and susceptibility testing using the HAIN GenoType® MTBDRplus.Results: Eighty-eight patients were enrolled (88% re-treatment, 42% smear positive, 93% pulmonary TB, 74% HIV co-infected). At baseline, 44/88 (50%) MGIT and 28 (32%) LJ cultures were positive with a mean time to positivity of 12.1 (Range 1-42) and 21.5 (Range 7-58) days, respectively. Four percent (3/77) of retreatment patients or 8% of the 38 MGIT+ PCR-confirmed retreatment cases had multi-drug resistant tuberculosis (MDR TB). One MDR TB patient was smear negative and only one MDR patient was identified with LJ. Lower mean hemoglobin at admission was associated with mortality (10.5 vs. 7.5; p<0.01; CI 101 9.8-11.0).Conclusions: The MDR TB burden among the retreatment population in Lilongwe, Malawi is similar to regional estimates by the WHO (7.7% 95% CI 0-18.1). MDR TB patients are not routinely identified with sputum smear or LJ, suggesting more efficient technology should be adopted

    Basic Representations of A_{2l}^(2) and D_{l+1}^(2) and the Polynomial Solutions to the Reduced BKP Hierarchies

    Full text link
    Basic representations of A_{2l}^(2) and D_{l+1}^(2) are studied. The weight vectors are represented in terms of Schur's QQ-functions. The method to get the polynomial solutions to the reduced BKP hierarchies is shown to be equivalent to a certain rule in Maya game.Comment: January 1994, 11 page

    Theory of temperature dependence of the Fermi surface-induced splitting of the alloy diffuse-scattering intensity peak

    Full text link
    The explanation is presented for the temperature dependence of the fourfold intensity peak splitting found recently in diffuse scattering from the disordered Cu3Au alloy. The wavevector and temperature dependence of the self-energy is identified as the origin of the observed behaviour. Two approaches for the calculation of the self-energy, the high-temperature expansion and the alpha-expansion, are proposed. Applied to the Cu3Au alloy, both methods predict the increase of the splitting with temperature, in agreement with the experimental results.Comment: 4 pages, 3 EPS figures, RevTeX, submitted to J. Phys. Condens. Matter (Letter to the Editor
    corecore