60 research outputs found
Radiative recombination of bare Bi83+: Experiment versus theory
Electron-ion recombination of completely stripped Bi83+ was investigated at
the Experimental Storage Ring (ESR) of the GSI in Darmstadt. It was the first
experiment of this kind with a bare ion heavier than argon. Absolute
recombination rate coefficients have been measured for relative energies
between ions and electrons from 0 up to about 125 eV. In the energy range from
15 meV to 125 eV a very good agreement is found between the experimental result
and theory for radiative recombination (RR). However, below 15 meV the
experimental rate increasingly exceeds the RR calculation and at Erel = 0 eV it
is a factor of 5.2 above the expected value. For further investigation of this
enhancement phenomenon the electron density in the interaction region was set
to 1.6E6/cm3, 3.2E6/cm3 and 4.7E6/cm3. This variation had no significant
influence on the recombination rate. An additional variation of the magnetic
guiding field of the electrons from 70 mT to 150 mT in steps of 1 mT resulted
in periodic oscillations of the rate which are accompanied by considerable
changes of the transverse electron temperature.Comment: 12 pages, 14 figures, to be published in Phys. Rev. A, see also
http://www.gsi.de/ap/ and http://www.strz.uni-giessen.de/~k
Dielectronic Recombination in Photoionized Gas. II. Laboratory Measurements for Fe XVIII and Fe XIX
In photoionized gases with cosmic abundances, dielectronic recombination (DR)
proceeds primarily via nlj --> nl'j' core excitations (Dn=0 DR). We have
measured the resonance strengths and energies for Fe XVIII to Fe XVII and Fe
XIX to Fe XVIII Dn=0 DR. Using our measurements, we have calculated the Fe
XVIII and Fe XIX Dn=0 DR DR rate coefficients. Significant discrepancies exist
between our inferred rates and those of published calculations. These
calculations overestimate the DR rates by factors of ~2 or underestimate it by
factors of ~2 to orders of magnitude, but none are in good agreement with our
results. Almost all published DR rates for modeling cosmic plasmas are computed
using the same theoretical techniques as the above-mentioned calculations.
Hence, our measurements call into question all theoretical Dn=0 DR rates used
for ionization balance calculations of cosmic plasmas. At temperatures where
the Fe XVIII and Fe XIX fractional abundances are predicted to peak in
photoionized gases of cosmic abundances, the theoretical rates underestimate
the Fe XVIII DR rate by a factor of ~2 and overestimate the Fe XIX DR rate by a
factor of ~1.6. We have carried out new multiconfiguration Dirac-Fock and
multiconfiguration Breit-Pauli calculations which agree with our measured
resonance strengths and rate coefficients to within typically better than
<~30%. We provide a fit to our inferred rate coefficients for use in plasma
modeling. Using our DR measurements, we infer a factor of ~2 error in the Fe XX
through Fe XXIV Dn=0 DR rates. We investigate the effects of this estimated
error for the well-known thermal instability of photoionized gas. We find that
errors in these rates cannot remove the instability, but they do dramatically
affect the range in parameter space over which it forms.Comment: To appear in ApJS, 44 pages with 13 figures, AASTeX with postsript
figure
Dielectronic Recombination (via N=2 --> N'=2 Core Excitations) and Radiative Recombination of Fe XX: Laboratory Measurements and Theoretical Calculations
We have measured the resonance strengths and energies for dielectronic
recombination (DR) of Fe XX forming Fe XIX via N=2 --> N'=2 (Delta_N=0) core
excitations. We have also calculated the DR resonance strengths and energies
using AUTOSTRUCTURE, HULLAC, MCDF, and R-matrix methods, four different
state-of-the-art theoretical techniques. On average the theoretical resonance
strengths agree to within <~10% with experiment. However, the 1 sigma standard
deviation for the ratios of the theoretical-to-experimental resonance strengths
is >~30% which is significantly larger than the estimated relative experimental
uncertainty of <~10%. This suggests that similar errors exist in the calculated
level populations and line emission spectrum of the recombined ion. We confirm
that theoretical methods based on inverse-photoionization calculations (e.g.,
undamped R-matrix methods) will severely overestimate the strength of the DR
process unless they include the effects of radiation damping. We also find that
the coupling between the DR and radiative recombination (RR) channels is small.
We have used our experimental and theoretical results to produce
Maxwellian-averaged rate coefficients for Delta_N=0 DR of Fe XX. For kT>~1 eV,
which includes the predicted formation temperatures for Fe XX in an optically
thin, low-density photoionized plasma with cosmic abundances, our experimental
and theoretical results are in good agreement. We have also used our R-matrix
results, topped off using AUTOSTRUCTURE for RR into J>=25 levels, to calculate
the rate coefficient for RR of Fe XX. Our RR results are in good agreement with
previously published calculations.Comment: To be published in ApJS. 65 pages with 4 tables and lots of figure
Dielectronic Recombination of Ground-State and Metastable Li+ Ions
Dielectronic recombination has been investigated for Delta-n = 1 resonances
of ground-state Li+(1s^2) and for Delta-n = 0 resonances of metastable Li+(1s2s
^3S). The ground-state spectrum shows three prominent transitions between 53
and 64 eV, while the metastable spectrum exhibits many transitions with
energies < 3.2 eV. Reasonably good agreement of R-matrix, LS coupling
calculations with the measured recombination rate coefficient is obtained. The
time dependence of the recombination rate yields a radiative lifetime of 52.2
+- 5.0 s for the 2 ^3S level of Li+.Comment: Submitted to Phys. Rev. A; REVTeX, 4 pages, 3 figure
Integration of Tumor Mutation Burden and PD-L1 Testing in Routine Laboratory Diagnostics in Non-Small Cell Lung Cancer
In recent years, Non-small cell lung cancer (NSCLC) has evolved into a prime example for precision oncology with multiple FDA-approved "precision" drugs. For the majority of NSCLC lacking targetable genetic alterations, immune checkpoint inhibition (ICI) has become standard of care in first-line treatment or beyond. PD-L1 tumor expression represents the only approved predictive biomarker for PD-L1/PD-1 checkpoint inhibition by therapeutic antibodies. Since PD-L1-negative or low-expressing tumors may also respond to ICI, additional factors are likely to contribute in addition to PD-L1 expression. Tumor mutation burden (TMB) has emerged as a potential candidate; however, it is the most complex biomarker so far and might represent a challenge for routine diagnostics. We therefore established a hybrid capture (HC) next-generation sequencing (NGS) assay that covers all oncogenic driver alterations as well as TMB and validated TMB values by correlation with the assay (F1CDx) used for the CheckMate 227 study. Results of the first consecutive 417 patients analyzed in a routine clinical setting are presented. Data show that fast reliable comprehensive diagnostics including TMB and targetable alterations are obtained with a short turn-around time. Thus, even complex biomarkers can easily be implemented in routine practice to optimize treatment decisions for advanced NSCLC
Recommended from our members
Recombination in Electron Coolers
An introduction to electron}ion recombination processes is given and recent measurements are described as examples, focusing on low collision energies. Discussed in particular are "ne-structure-mediated dielectronic recombination of #uorine-like ions, the moderate recombination enhancement by factors of typically 1.5}4 found for most ion species at relative electron}ion energies below about 10 meV, and the much larger enhancement occurring for speci"c highly charged ions of complex electronic structure, apparently caused by low-energy dielectronic recombination resonances. Recent experiments revealing dielectronic resonances with very large natural width are also described. 2000 Elsevier Science B.V. All rights reserved
Electron-ion Recombination of Fe X forming Fe IX and of Fe XI forming Fe X: Laboratory Measurements and Theoretical Calculations
We have measured electron-ion recombination for Fe forming Fe
and for Fe forming Fe using merged beams at the TSR heavy-ion
storage-ring in Heidelberg. The measured merged beams recombination rate
coefficients (MBRRC) for relative energies from 0 to 75 eV are presented,
covering all dielectronic recombination (DR) resonances associated with 3s->3p
and 3p->3d core transitions in the spectroscopic species Fe X and Fe XI,
respectively. We compare our experimental results to multi-configuration
Breit-Pauli (MCBP) calculations and find significant differences. From the
measured MBRRC we have extracted the DR contributions and transform them into
plasma recombination rate coefficients (PRRC) for astrophysical plasmas with
temperatures from 10^2 to 10^7 K. This spans across the regimes where each ion
forms in photoionized or in collisionally ionized plasmas. For both temperature
regimes the experimental uncertainties are 25% at a 90% confidence level. The
formerly recommended DR data severely underestimated the rate coefficient at
temperatures relevant for photoionized gas. At the temperatures relevant for
photoionized gas, we find agreement between our experimental results and MCBP
theory. At the higher temperatures relevant for collisionally ionized gas, the
MCBP calculations yield a Fe XI DR rate coefficent which is significantly
larger than the experimentally derived one. We present parameterized fits to
our experimentally derived DR PRRC.Comment: 44 Pages, 5 Figures. Accepted for publication in Astrophys.
- …