1,378 research outputs found

    Analysis of multiple incidence angle SIR-B data for determining forest stand characteristics

    Get PDF
    For the first time in the U.S. space program, digital synthetic aperture radar (SR) data were obtained from different incidence angles during Space Shuttle Mission 41-G. Shuttle Imaging Radar-B (SIR-B) data were obtained at incidence angles of 58 deg., 45 deg., and 28 deg., on October 9, 10, and 11, 1984, respectively, for a predominantly forested study area in northern Florida. Cloud-free LANDSAT Thematic Mapper (T.M.) data were obtained over the same area on October 12. The SIR-B data were processed and then digitally registered to the LANDSAT T.M. data by scientists at the Jet Propulsion Laboratory. This is the only known digitally registered SIR-B and T.M. data set for which the data were obtained nearly simultaneously. The data analysis of this information is discussed

    Analysis of Integrating Sphere Performance for IR Enhanced DT Layering

    Get PDF
    Absorbed IR energy can supplement the beta decay energy from DT ice to improve the driving force toward uniform layers. A significant problem with this approach has been to deliver the added IR energy with sufficient uniformity to enhance rather than destroy the uniformity of the ice layers. Computer modeling has indicated that one can achieve {approximately}1% uniformity in the angular variation of the absorbed power using an integrating sphere containing holes large enough to allow external inspection of the ice layer uniformity. The power required depends on the integrating sphere size, a 25 mm diameter sphere requires {approximately}35 mW of IR to deposit as much energy in the ice as the 50 mW/cm{sup 3}(35 pW total) received from tritium decay in DT. Power absorbed in the plastic can cause unacceptable ice-layer non-uniformities for the integrating sphere design considered here

    An Educational Program for Blind Infants

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68635/2/10.1177_002246696900300201.pd

    Local modes, phonons, and mass transport in solid 4^4He

    Full text link
    We propose a model to treat the local motion of atoms in solid 4^{4}He as a local mode. In this model, the solid is assumed to be described by the Self Consistent Harmonic approximation, combined with an array of local modes. We show that in the bcc phase the atomic local motion is highly directional and correlated, while in the hcp phase there is no such correlation. The correlated motion in the bcc phase leads to a strong hybridization of the local modes with the T1(110)_{1}(110) phonon branch, which becomes much softer than that obtained through a Self Consistent Harmonic calculation, in agreement with experiment. In addition we predict a high energy excitation branch which is important for self-diffusion. Both the hybridization and the presence of a high energy branch are a consequence of the correlation, and appear only in the bcc phase. We suggest that the local modes can play the role in mass transport usually attributed to point defects (vacancies). Our approach offers a more overall consistent picture than obtained using vacancies as the predominant point defect. In particular, we show that our approach resolves the long standing controversy regarding the contribution of point defects to the specific heat of solid 4^{4}He.Comment: 10 pages, 10 figure

    Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques

    Get PDF
    International audienceSpectral aerosol light absorption is an important parameter for the assessment of the radiation budget of the atmosphere. Although on-line measurement techniques for aerosol light absorption, such as the Aethalometer and the Particle Soot Absorption Photometer (PSAP), have been available for two decades, they are limited in accuracy and spectral resolution because of the need to deposit the aerosol on a filter substrate before measurement. Recently, a 7-wavelength (?) Aethalometer became commercially available, which covers the visible (VIS) to near-infrared (NIR) spectral range (?=450?950 nm), and laboratory calibration studies improved the degree of confidence in these measurement techniques. However, the applicability of the laboratory calibration factors to ambient conditions has not been investigated thoroughly yet. As part of the LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia ? SMOke aerosols, Clouds, rainfall and Climate) campaign from September to November 2002 in the Amazon basin we performed an extensive field calibration of a 1-? PSAP and a 7-? Aethalometer utilizing a photoacoustic spectrometer (PAS, 532 nm) as reference device. Especially during the dry period of the campaign, the aerosol population was dominated by pyrogenic emissions. The most pronounced artifact of integrating-plate type attenuation techniques (e.g. Aethalometer, PSAP) is due to multiple scattering effects within the filter matrix. For the PSAP, we essentially confirmed the laboratory calibration factor by Bond et al. (1999). On the other hand, for the Aethalometer we found a multiple scattering enhancement of 5.23 (or 4.55, if corrected for aerosol scattering), which is significantly larger than the factors previously reported (~2) for laboratory calibrations. While the exact reason for this discrepancy is unknown, the available data from the present and previous studies suggest aerosol mixing (internal versus external) as a likely cause. For Amazonian aerosol, we found no absorption enhancement due to hygroscopic particle growth in the relative humidity (RH) range between 40% and 80%. However, a substantial bias in PSAP sensitivity that correlated with both RH and temperature (T) was observed for 20%RH<30% and 24°

    Characterization of Ceriporiopsis subvermispora Bicupin Oxalate Oxidase Expressed in Pichia pastoris

    Get PDF
    Oxalate oxidase (E.C. 1.2.3.4) catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction that is coupled with the formation of hydrogen peroxide. Although there is currently no structural information available for oxalate oxidase fromCeriporiopsis subvermispora (CsOxOx), sequence data and homology modeling indicate that it is the first manganese-containing bicupin enzyme identified that catalyzes this reaction. Interestingly, CsOxOx shares greatest sequence homology with bicupin microbial oxalate decarboxylases (OxDC). We show that CsOxOx activity directly correlates with Mn content and other metals do not appear to be able to support catalysis. EPR spectra indicate that the Mn is present as Mn(II), and are consistent with the coordination environment expected from homology modeling with known X-ray crystal structures of OxDC from Bacillus subtilis. EPR spin-trapping experiments support the existence of an oxalate-derived radical species formed during turnover. Acetate and a number of other small molecule carboxylic acids are competitive inhibitors for oxalate in the CsOxOx catalyzed reaction. The pH dependence of this reaction suggests that the dominant contribution to catalysis comes from the monoprotonated form of oxalate binding to a form of the enzyme in which an active site carboxylic acid residue must be unprotonated

    Femtosecond Laser-Produced Plasma X-Rays from Periodically Modulated Surface Targets

    Get PDF
    We have studied theoretically and experimentally the x-ray production above 1 keV from femtosecond laser plasmas generated on periodically modulated surface targets. Laser energy coupling to plasma surface waves has been modeled using a numerical differential method. Almost total absorption of incident laser radiation is predicted for optimized interaction conditions. Silicon gratings have been irradiated by a 120fs Ti:sapphire laser at irradiances in excess of 1016 W/cm2. X-ray intensities above 1.5 keV (K-shell lines) have been measured as a function of the incidence angle. Results show a distinct x-ray emission maximum for the first order diffraction angle and are in good qualitative agreement with our theoretical predictions

    Monte Carlo simulation of expected outcomes with the AcrySof® toric intraocular lens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To use a Monte Carlo simulation to predict postoperative results with the AcrySof<sup>® </sup>Toric lens, evaluating the likelihood of over- or under-correction using various toric lens selection criteria.</p> <p>Methods</p> <p>Keratometric data were obtained from a large patient population with preoperative corneal astigmatism <= 2.50D (2,000 eyes). The probability distributions for toric marking accuracy, surgically induced astigmatism and lens rotation were estimated using available data. Anticipated residual astigmatism was calculated using a Monte Carlo simulation under two different lens selection scenarios.</p> <p>Results</p> <p>This simulation demonstrated that random errors in alignment, surgically induced astigmatism and lens rotation slightly reduced the overall effect of the toric lens. Residual astigmatism was statistically significantly higher under the simulation of surgery relative to an exact calculation (p < 0.05). The simulation also demonstrated that more aggressive lens selection criteria could produce clinically significant reductions in residual astigmatism in a high percentage of patients.</p> <p>Conclusion</p> <p>Monte Carlo simulation suggests that surgical variability and lens orientation/rotation variability may combine to produce small reductions in the correction achieved with the AcrySof<sup>® </sup>Toric<sup>® </sup>IOL. Adopting more aggressive lens selection criteria may yield significantly lower residual astigmatism values for many patients, with negligible overcorrections. Surgeons are encouraged to evaluate their AcrySof<sup>® </sup>Toric<sup>® </sup>outcomes to determine if they should modify their individual lens selection criteria, or their default surgically induced astigmatism value, to benefit their patients.</p
    corecore