6,839 research outputs found

    Vertical structure of Arctic haze observed by lidar

    Get PDF
    In the study of the Arctic Haze phenomenon, understanding the vertical structure of the haze aerosol is crucial in defining mechanisms of haze transport. Questions have also arisen concerning the representativeness of surface observations of Arctic Haze. Due to the strongly stratified nature of the Arctic troposphere, the mechanisms which transport aerosol to the surface from the transport altitudes of the lower troposphere are not obvious. In order to examine these questions, a Mie scattering lidar was installed at Alert, NWT, Canada. Lidar observes atmospheric aerosols and hydrymeteors as they appear in nature, unmodified by sampling effects. As such the results obtained are more realistic of the light scattering characteristics of the in situ aerosol than are those obtained by integrating nephelometers, for example, which heat the aerosol and dry it before measurement. With this lidar, a pulse was transmitted vetically through an evacuated tube in the roof of a building at Alert. The receiver consisted of a 20cm diameter Fresnel telescope, neutral density and polarizing filters, and RCA C31000A PMT, Analog Modules LA-90-P logarithmic amplifier and a Lecroy TR8827 32 MHz digitizer. The lidar equation was solved for the backscattering coefficient of the aerosol assuming no two way transmission losses in the signal. The lidar results have shown that intercomparison between lidar obtained visibilities and observer visibilities are in much better agreement than for other optical or aerosol monitors. Three new effects were identified in the lidar profiles which contribute to the vertical transport of haze. These effects are briefly discussed

    Inexpensive high-temperature furnace for thermocouple calibration

    Get PDF
    New furnace calibrates unknown thermocouple by comparing its electrical output to a reference thermocouple /previously calibrated by optical pyrometry/, as both are heated simultaneously. Thermocouples may be radioactive, thus heat source must be accessible by remote manipulation and inspection measurements. Advantages of furnace operation are cited

    High-temperature rapid-response thermocouple for reducing atmospheres

    Get PDF
    Thermocouple measures continuously in flowing gaseous hydrogen at temperatures up to 4000 deg F, in environments made hazardous by radiation, and where rapid response and calibration reproducibility are critically important. Thermocouple wires extend continuously, without splice or foreign material, from cold junction to probe's tip

    Existence of global strong solutions in critical spaces for barotropic viscous fluids

    Get PDF
    This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N2N\geq2. We address the question of the global existence of strong solutions for initial data close from a constant state having critical Besov regularity. In a first time, this article show the recent results of \cite{CD} and \cite{CMZ} with a new proof. Our result relies on a new a priori estimate for the velocity, where we introduce a new structure to \textit{kill} the coupling between the density and the velocity as in \cite{H2}. We study so a new variable that we call effective velocity. In a second time we improve the results of \cite{CD} and \cite{CMZ} by adding some regularity on the initial data in particular ρ0\rho_{0} is in H1H^{1}. In this case we obtain global strong solutions for a class of large initial data on the density and the velocity which in particular improve the results of D. Hoff in \cite{5H4}. We conclude by generalizing these results for general viscosity coefficients

    Opening the Pandora's box of quantum spinor fields

    Full text link
    Lounesto's classification of spinors is a comprehensive and exhaustive algorithm that, based on the bilinears covariants, discloses the possibility of a large variety of spinors, comprising regular and singular spinors and their unexpected applications in physics and including the cases of Dirac, Weyl, and Majorana as very particular spinor fields. In this paper we pose the problem of an analogous classification in the framework of second quantization. We first discuss in general the nature of the problem. Then we start the analysis of two basic bilinear covariants, the scalar and pseudoscalar, in the second quantized setup, with expressions applicable to the quantum field theory extended to all types of spinors. One can see that an ampler set of possibilities opens up with respect to the classical case. A quantum reconstruction algorithm is also proposed. The Feynman propagator is extended for spinors in all classes.Comment: 18 page
    corecore