245 research outputs found

    Measurement of oxidation in plasma Lp(a) in CAPD patients using a novel ELISA

    Get PDF
    Measurement of oxidation in plasma Lp(a) in CAPD patients using a novel ELISA.BackgroundLGE2 is produced by the cyclooxygenase- or free radical-mediated modification of arachidonate and is formed during the oxidation of low density lipoprotein (LDL) with subsequent adduction to lysine residues in apo B. We have developed a sensitive enzyme-linked sandwich immunosorbent assay (ELISA) for detection and measurement of LGE2-protein adducts as an estimate of oxidation of plasma LDL and Lp(a).MethodsThe assay employs rabbit polyclonal antibodies directed against LGE2-protein adducts that form pyrroles, and alkaline phosphatase-conjugated polyclonal antibodies specific for apo B or apo (a). It demonstrates a high degree of specificity, sensitivity and validity.ResultsEpitopes characteristic for LGE2-pyrroles were quantified in patients with end-stage renal disease (ESRD) that had undergone continuous ambulatory peritoneal dialysis (CAPD) and in a gender- and age-matched control population. In addition to finding that both LDL and Lp(a) levels were elevated in CAPD patients, we also found that plasma Lp(a) but not LDL was more oxidized in CAPD patients when compared to corresponding lipoproteins from healthy subjects. Using density gradient ultracentrifugation of plasma samples, we found that modified Lp(a) floats at the same density as total Lp(a).ConclusionsThe results of this study demonstrate that oxidation of plasma Lp(a) is a characteristic of ESRD patients undergoing CAPD. This ELISA may be useful for further investigations on oxidation of lipoproteins in the circulation of specific patient populations

    Protein Adducts of Iso[4]levuglandin E2, a Product of the Isoprostane Pathway, in Oxidized Low Density Lipoprotein

    Get PDF
    Levuglandin (LG) E2, a cytotoxic seco prostanoic acid co-generated with prostaglandins by nonenzymatic rearrangements of the cyclooxygenase-derived endoperoxide, prostaglandin H2, avidly binds to proteins. That LGE2-protein adducts can also be generated nonenzymatically is demonstrated by their production during free radical-induced oxidation of low density lipoprotein (LDL). Like oxidized LDL, LGE2-LDL, but not native LDL, undergoes receptor-mediated uptake and impaired processing by macrophage cells. Since radical-induced lipid oxidation produces isomers of prostaglandins, isoprostanes (isoPs), via endoperoxide intermediates, we postulated previously that a similar family of LG isomers, isoLGs, is cogenerated with isoPs. Now iso[4]LGE2-protein epitopes produced by radical-induced oxidation of arachidonic acid in the presence of protein were detected with an enzyme-linked immunosorbent assay. Iso[4]LGE2-protein epitopes are also generated during free radical-induced oxidation of LDL. All of the LGE2isomers generated upon oxidation of LDL are efficiently sequestered by covalent adduction with LDL-based amino groups. The potent electrophilic reactivity of iso-LGs can be anticipated to have biological consequences beyond their obvious potential as markers for specific arachidonate-derived protein modifications that may be of value for the quantitative assessment of oxidative injury

    A bayesian meta-analysis of multiple treatment comparisons of systemic regimens for advanced pancreatic cancer

    Get PDF
    © 2014 Chan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: For advanced pancreatic cancer, many regimens have been compared with gemcitabine (G) as the standard arm in randomized controlled trials. Few regimens have been directly compared with each other in randomized controlled trials and the relative efficacy and safety among them remains unclear

    The cross-sectional GRAS sample: A comprehensive phenotypical data collection of schizophrenic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schizophrenia is the collective term for an exclusively clinically diagnosed, heterogeneous group of mental disorders with still obscure biological roots. Based on the assumption that valuable information about relevant genetic and environmental disease mechanisms can be obtained by association studies on patient cohorts of ≥ 1000 patients, if performed on detailed clinical datasets and quantifiable biological readouts, we generated a new schizophrenia data base, the GRAS (Göttingen Research Association for Schizophrenia) data collection. GRAS is the necessary ground to study genetic causes of the schizophrenic phenotype in a 'phenotype-based genetic association study' (PGAS). This approach is different from and complementary to the genome-wide association studies (GWAS) on schizophrenia.</p> <p>Methods</p> <p>For this purpose, 1085 patients were recruited between 2005 and 2010 by an invariable team of traveling investigators in a cross-sectional field study that comprised 23 German psychiatric hospitals. Additionally, chart records and discharge letters of all patients were collected.</p> <p>Results</p> <p>The corresponding dataset extracted and presented in form of an overview here, comprises biographic information, disease history, medication including side effects, and results of comprehensive cross-sectional psychopathological, neuropsychological, and neurological examinations. With >3000 data points per schizophrenic subject, this data base of living patients, who are also accessible for follow-up studies, provides a wide-ranging and standardized phenotype characterization of as yet unprecedented detail.</p> <p>Conclusions</p> <p>The GRAS data base will serve as prerequisite for PGAS, a novel approach to better understanding 'the schizophrenias' through exploring the contribution of genetic variation to the schizophrenic phenotypes.</p

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of δCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Get PDF
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model
    corecore