1,225 research outputs found

    Decomposition Based Search - A theoretical and experimental evaluation

    Full text link
    In this paper we present and evaluate a search strategy called Decomposition Based Search (DBS) which is based on two steps: subproblem generation and subproblem solution. The generation of subproblems is done through value ranking and domain splitting. Subdomains are explored so as to generate, according to the heuristic chosen, promising subproblems first. We show that two well known search strategies, Limited Discrepancy Search (LDS) and Iterative Broadening (IB), can be seen as special cases of DBS. First we present a tuning of DBS that visits the same search nodes as IB, but avoids restarts. Then we compare both theoretically and computationally DBS and LDS using the same heuristic. We prove that DBS has a higher probability of being successful than LDS on a comparable number of nodes, under realistic assumptions. Experiments on a constraint satisfaction problem and an optimization problem show that DBS is indeed very effective if compared to LDS.Comment: 16 pages, 8 figures. LIA Technical Report LIA00203, University of Bologna, 200

    Bubble size prediction in co-flowing streams

    Get PDF
    In this paper, the size of bubbles formed through the breakup of a gaseous jet in a co-axial microfluidic device is derived. The gaseous jet surrounded by a co-flowing liquid stream breaks up into monodisperse microbubbles and the size of the bubbles is determined by the radius of the inner gas jet and the bubble formation frequency. We obtain the radius of the gas jet by solving the Navier-Stokes equations for low Reynolds number flows and by minimization of the dissipation energy. The prediction of the bubble size is based on the system's control parameters only, i.e. the inner gas flow rate QiQ_i, the outer liquid flow rate QoQ_o, and the tube radius RR. For a very low gas-to-liquid flow rate ratio (Qi/Qo0Q_i / Q_o \rightarrow 0) the bubble radius scales as rb/RQi/Qor_b / R \propto \sqrt{Q_i / Q_o}, independently of the inner to outer viscosity ratio ηi/ηo\eta_i/\eta_o and of the type of the velocity profile in the gas, which can be either flat or parabolic, depending on whether high-molecular-weight surfactants cover the gas-liquid interface or not. However, in the case in which the gas velocity profiles are parabolic and the viscosity ratio is sufficiently low, i.e. ηi/ηo1\eta_i/\eta_o \ll 1, the bubble diameter scales as rb(Qi/Qo)βr_b \propto (Q_i/Q_o)^\beta, with β\beta smaller than 1/2
    corecore