86 research outputs found

    Real-time myocardial landmark tracking for MRI-guided cardiac radio-ablation using Gaussian Processes

    Full text link
    The high speed of cardiorespiratory motion introduces a unique challenge for cardiac stereotactic radio-ablation (STAR) treatments with the MR-linac. Such treatments require tracking myocardial landmarks with a maximum latency of 100 ms, which includes the acquisition of the required data. The aim of this study is to present a new method that allows to track myocardial landmarks from few readouts of MRI data, thereby achieving a latency sufficient for STAR treatments. We present a tracking framework that requires only few readouts of k-space data as input, which can be acquired at least an order of magnitude faster than MR-images. Combined with the real-time tracking speed of a probabilistic machine learning framework called Gaussian Processes, this allows to track myocardial landmarks with a sufficiently low latency for cardiac STAR guidance, including both the acquisition of required data, and the tracking inference. The framework is demonstrated in 2D on a motion phantom, and in vivo on volunteers and a ventricular tachycardia (arrhythmia) patient. Moreover, the feasibility of an extension to 3D was demonstrated by in silico 3D experiments with a digital motion phantom. The framework was compared with template matching - a reference, image-based, method - and linear regression methods. Results indicate an order of magnitude lower total latency (<10 ms) for the proposed framework in comparison with alternative methods. The root-mean-square-distances and mean end-point-distance with the reference tracking method was less than 0.8 mm for all experiments, showing excellent (sub-voxel) agreement. The high accuracy in combination with a total latency of less than 10 ms - including data acquisition and processing - make the proposed method a suitable candidate for tracking during STAR treatments

    Gene expression profiling of bronchial brushes is associated with the level of emphysema measured by computed tomography-based parametric response mapping

    Get PDF
    Parametric response mapping (PRM) is a computed tomography (CT)-based method to phenotype patients with chronic obstructive pulmonary disease (COPD). It is capable of differentiating emphysema-related air trapping with nonemphysematous air trapping (small airway disease), which helps to identify the extent and localization of the disease. Most studies evaluating the gene expression in smokers and COPD patients related this to spirometric measurements, but none have investigated the relationship with CT-based measurements of lung structure. The current study aimed to examine gene expression profiles of brushed bronchial epithelial cells in association with the PRM-defined CT-based measurements of emphysema (PRM(Emph)) and small airway disease (PRM(fSAD)). Using the Top Institute Pharma (TIP) study cohort (COPD = 12 and asymptomatic smokers = 32), we identified a gene expression signature of bronchial brushings, which was associated with PRM(Emph) in the lungs. One hundred thirty-three genes were identified to be associated with PRM(Emph). Among the most significantly associated genes, CXCL11 is a potent chemokine involved with CD8(+) T cell activation during inflammation in COPD, indicating that it may play an essential role in the development of emphysema. The PRM(Emph) signature was then replicated in two independent data sets. Pathway analysis showed that the PRM(Emph) signature is associated with proinflammatory and notch signaling pathways. Together these findings indicate that airway epithelium may play a role in the development of emphysema and/or may act as a biomarker for the presence of emphysema. In contrast, its role in relation to functional small airways disease is less clear

    Low-dose CT measurements of airway dimensions and emphysema associated with airflow limitation in heavy smokers:a cross sectional study

    Get PDF
    Background: Increased airway wall thickness (AWT) and parenchymal lung destruction both contribute to airflow limitation. Advances in computed tomography (CT) post-processing imaging allow to quantify these features. The aim of this Dutch population study is to assess the relationships between AWT, lung function, emphysema and respiratory symptoms.Methods: AWT and emphysema were assessed by low-dose CT in 500 male heavy smokers, randomly selected from a lung cancer screening population. AWT was measured in each lung lobe in cross-sectionally reformatted images with an automated imaging program at locations with an internal diameter of 3.5 mm, and validated in smaller cohorts of patients. The 15th percentile method (Perc15) was used to assess the severity of emphysema. Information about respiratory symptoms and smoking behavior was collected by questionnaires and lung function by spirometry.Results: Median AWT in airways with an internal diameter of 3.5 mm (AWT(3.5)) was 0.57 (0.44 - 0.74) mm. Median AWT in subjects without symptoms was 0.52 (0.41-0.66) and in those with dyspnea and/or wheezing 0.65 (0.52-0.81) mm (pConclusions: Post processing standardization of airway wall measurements provides a reliable and useful method to assess airway wall thickness. Increased airway wall thickness contributes more to airflow limitation than emphysema in a smoking male population even after adjustment for smoking behavior.</p

    Inter-observer and inter-examination variability of manual vertebral bone attenuation measurements on computed tomography

    Get PDF
    Objective: To determine inter-observer and inter-examination variability of manual attenuation measurements of the vertebrae in low-dose unenhanced chest computed tomography (CT). Methods: Three hundred and sixty-seven lung cancer screening trial participants who underwent baseline and repeat unenhanced low-dose CT after 3 months because of an indeterminate lung nodule were included. The CT attenuation value of the first lumbar vertebrae (L1) was measured in all CTs by one observer to obtain inter-examination reliability. Six observers performed measurements in 100 randomly selected CTs to determine agreement with limits of agreement and Bland-Altman plots and reliability with intraclass correlation coefficients (ICCs). Reclassification analyses were performed using a threshold of 110 HU to define osteoporosis. Results: Inter-examination reliability was excellent with an ICC of 0.92 (p < 0.001). Inter-examination limits of agreement ranged from -26 to 28 HU with a mean difference of 1 ± 14 HU. Inter-observer reliability ICCs ranged from 0.70 to 0.91. Inter-examination variability led to 11.2 % reclassification of participants and inter-observer variability led to 22.1 % reclassification. Conclusions: Vertebral attenuation values can be manually quantified with good to excellent inter-examination and inter-observer reliability on unenhanced low-dose chest CT. This information is valuable for early detection of osteoporosis on low-dose chest CT. Key Points: • Vertebral attenuation values can be manually quantified on low-dose unenhanced CT reliably.• Vertebral attenuation measurements may be helpful in detecting subclinical low bone density.• This could become of importance in the detection of osteoporosis

    CT-Based Local Distribution Metric Improves Characterization of COPD

    Get PDF
    Parametric response mapping (PRM) of paired CT lung images has been shown to improve the phenotyping of COPD by allowing for the visualization and quantification of non-emphysematous air trapping component, referred to as functional small airways disease (fSAD). Although promising, large variability in the standard method for analyzing PRM(fSAD) has been observed. We postulate that representing the 3D PRM(fSAD) data as a single scalar quantity (relative volume of PRM(fSAD)) oversimplifies the original 3D data, limiting its potential to detect the subtle progression of COPD as well as varying subtypes. In this study, we propose a new approach to analyze PRM. Based on topological techniques, we generate 3D maps of local topological features from 3D PRM(fSAD) classification maps. We found that the surface area of fSAD (S(fSAD)) was the most robust and significant independent indicator of clinically meaningful measures of COPD. We also confirmed by micro-CT of human lung specimens that structural differences are associated with unique S(fSAD) patterns, and demonstrated longitudinal feature alterations occurred with worsening pulmonary function independent of an increase in disease extent. These findings suggest that our technique captures additional COPD characteristics, which may provide important opportunities for improved diagnosis of COPD patients

    Exploring imaging features of molecular subtypes of large cell neuroendocrine carcinoma (LCNEC)

    Get PDF
    Objectives: Radiological characteristics and radiomics signatures can aid in differentiation between small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC). We investigated whether molecular subtypes of large cell neuroendocrine carcinoma (LCNEC), i.e. SCLC-like (with pRb loss) vs. NSCLC-like (with pRb expression), can be distinguished by imaging based on (1) imaging interpretation, (2) semantic features, and/or (3) a radiomics signature, designed to differentiate between SCLC and NSCLC. Materials and Methods: Pulmonary oncologists and chest radiologists assessed chest CT-scans of 44 LCNEC patients for ‘small cell-like’ or ‘non-small cell-like’ appearance. The radiologists also scored semantic features of 50 LCNEC scans. Finally, a radiomics signature was trained on a dataset containing 48 SCLC and 76 NSCLC scans and validated on an external set of 58 SCLC and 40 NSCLC scans. This signature was applied on scans of 28 SCLC-like and 8 NSCLC-like LCNEC patients. Results: Pulmonary oncologists and radiologists were unable to differentiate between molecular subtypes of LCNEC and no significant differences in semantic features were found. The area under the receiver operating characteristics curve of the radiomics signature in the validation set (SCLC vs. NSCLC) was 0.84 (95% confidence interval (CI) 0.77-0.92) and 0.58 (95% CI 0.29-0.86) in the LCNEC dataset (SCLC-like vs. NSCLC-like). Conclusion: LCNEC appears to have radiological characteristics of both SCLC and NSCLC, irrespective of pRb loss, compatible with the SCLC-like subtype. Imaging interpretation, semantic features and our radiomics signature designed to differentiate between SCLC and NSCLC were unable to separate molecular LCNEC subtypes, which underscores that LCNEC is a unique disease

    Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial

    Get PDF
    Trials show that low-dose computed tomography (CT) lung cancer screening in long-term (ex-)smokers reduces lung cancer mortality. However, many individuals were exposed to unnecessary diagnostic procedures. This project aims to improve the efficiency of lung cancer screening by identifying high-risk participants, and improving risk discrimination for nodules. This study is an extension of the Dutch-Belgian Randomized Lung Cancer Screening Trial, with a focus on personalized outcome prediction (NELSON-POP). New data will be added on genetics, air pollution, malignancy risk for lung nodules, and CT biomarkers beyond lung nodules (emphysema, coronary calcification, bone density, vertebral height and body composition). The roles of polygenic risk scores and air pollution in screen-detected lung cancer diagnosis and survival will be established. The association between the AI-based nodule malignancy score and lung cancer will be evaluated at baseline and incident screening rounds. The association of chest CT imaging biomarkers with outcomes will be established. Based on these results, multisource prediction models for pre-screening and post-baseline-screening participant selection and nodule management will be developed. The new models will be externally validated. We hypothesize that we can identify 15-20% participants with low-risk of lung cancer or short life expectancy and thus prevent ~140,000 Dutch individuals from being screened unnecessarily. We hypothesize that our models will improve the specificity of nodule management by 10% without loss of sensitivity as compared to assessment of nodule size/growth alone, and reduce unnecessary work-up by 40-50%

    Landmark papers in respiratory medicine: Automatic quantification of emphysema and airways disease on computed tomography

    No full text
    Landmark studies on automatic CT quantification of the pathophysiological factors in obstructive pulmonary diseases http://ow.ly/YEKhv
    • …
    corecore