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Abstract
Trials show that low-dose computed tomography (CT) lung cancer screening in long-term (ex-)smokers reduces lung 
cancer mortality. However, many individuals were exposed to unnecessary diagnostic procedures. This project aims to 
improve the efficiency of lung cancer screening by identifying high-risk participants, and improving risk discrimination 
for nodules. This study is an extension of the Dutch-Belgian Randomized Lung Cancer Screening Trial, with a focus on 
personalized outcome prediction (NELSON-POP). New data will be added on genetics, air pollution, malignancy risk for 
lung nodules, and CT biomarkers beyond lung nodules (emphysema, coronary calcification, bone density, vertebral height 
and body composition). The roles of polygenic risk scores and air pollution in screen-detected lung cancer diagnosis 
and survival will be established. The association between the AI-based nodule malignancy score and lung cancer will be 
evaluated at baseline and incident screening rounds. The association of chest CT imaging biomarkers with outcomes will 
be established. Based on these results, multisource prediction models for pre-screening and post-baseline-screening partici-
pant selection and nodule management will be developed. The new models will be externally validated. We hypothesize 
that we can identify 15–20% participants with low-risk of lung cancer or short life expectancy and thus prevent ~140,000 
Dutch individuals from being screened unnecessarily. We hypothesize that our models will improve the specificity of nod-
ule management by 10% without loss of sensitivity as compared to assessment of nodule size/growth alone, and reduce 
unnecessary work-up by 40–50%.
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Background

Lung cancer is one of the most frequently diagnosed cancers 
and the leading cause of cancer-related deaths worldwide 
in 2020 with an estimated 2.20 million diagnosed cases 
and 1.79 million deaths per year [1] The majority (about 
82%) of lung cancer cases are attributable to smoking [2] 
and approximately 81% of lung cancer deaths in 2022 will 
be directly caused by cigarette smoking [3] Early detec-
tion through low-dose computed tomography (CT) has 
been proven to be a means of reducing lung cancer-specific 
deaths in a high-risk population. Lung cancer CT screen-
ing in long-term smokers reduced lung cancer mortality by 
20–24% as supported by results from two trials: the Dutch-
Belgian Randomized Lung Cancer Screening Trial (NEL-
SON) and the US National Lung Screening Trial (NLST) 
[4, 5].

In NELSON, NLST, and other trials, all participants were 
regarded to be at high risk for lung cancer, but only a low 
percentage was diagnosed with lung cancer (0.7–2.2% at 
baseline). This has sparked discussions that if a cohort is 
invited for screening based on age and long-term smoking 
alone (like in NELSON), many individuals will not benefit. 
They may either have a low-risk for lung cancer despite 
their age and smoking history, or may have insufficient life 
expectancy to benefit from screening [6]. Thus, there is a 
critical need for better selection of individuals who will ben-
efit from screening.

A drawback of NLST is the percentage of false positives. 
Over three screening rounds, 24.2% of CT scans were con-
sidered positive (lung nodule ≥ 4 mm diameter), but 96.4% 
of those were false-positives. The approach of the NELSON 
study, based on nodule volumetry and an intermediate test 
result category, led to a lower percentage of false positive 
results. Nevertheless, in NELSON, still one fifth of the 
participants had indeterminate or suspicious lung nodules 
at baseline [4], of whom 95.5% eventually tested negative 
for lung cancer. Thus, improved stratification and manage-
ment of the detected nodules is needed, in order to prevent 
unnecessary follow-up screening and further diagnostic 
procedures.

In recent years, there has been an increasing recogni-
tion of the utility of risk models [7] to improve CT screen-
ing efficiency: to pre-select individuals with highest lung 
cancer risk in combination with sufficient life expectancy 
[6], and to evaluate the risk of lung nodule malignancy [8]. 
One study showed that PLCO2012, a model for participant 
selection based on education, body-mass index, family his-
tory of lung cancer, chronic obstructive pulmonary disease 
(COPD) and previous chest radiography in addition to age 
and smoking pack-years, showed higher sensitivity for lung 
cancer (83.0% vs. 71.1%) without loss of specificity, as 

compared to selection criteria based on age and pack-years 
alone (NLST data) [9]. Another study showed that the Pan-
Can model outperformed the UKLS model in discriminating 
low- from high-risk lung nodules [area under the receiver 
operating characteristic (ROC AUC) 0.94 versus 0.58] in 
external validation [8].

There is great interest in evaluating new data sources to 
improve models for participant selection and nodule man-
agement [7]. Genetic and molecular markers, as well as CT-
based biomarkers beyond lung nodules have been suggested 
[10, 11]. Very recently, air pollution as environmental fac-
tor was reported as another predictive factor for lung cancer 
[12]. Currently no validated risk prediction model incorpo-
rates such biomarkers or genetic susceptibility variants.

Technological advances have enabled the development 
of risk prediction models for lung cancer using multi-source 
data. Not only genetic and environmental data derived 
from the collected NELSON data, but also artificial intel-
ligence (AI) based nodule evaluation, and chest CT imag-
ing biomarkers beyond lung nodules may enrich prediction 
models and improve individual selection and lung nodule 
management.

The goal of this project is to improve the efficiency of 
lung cancer screening through expanding and integrating 
further NELSON data, addressing the limitation of previ-
ous approaches and developing multi-source risk prediction 
models for personalized risk assessment and lung nodule 
stratification. Therefore this project has the following objec-
tives, namely to:

1. Construct and optimize polygenic risk scores for pre-
diction of lung cancer.

2. Construct and evaluate air pollution-based environmen-
tal risk scores for prediction of lung cancer.

3. Determine the cancer probability of lung nodules using 
an AI risk score.

4. Measure CT biomarkers beyond lung nodules in NEL-
SON screening rounds (emphysema, coronary calcifica-
tion, bone density, vertebral height, body composition).

5. Develop and validate multisource data prediction mod-
els for selecting participants at the highest risk of lung 
cancer.

6. Develop and validate multisource data prediction mod-
els for lung nodule management with the aim to reduce 
the number of unnecessary follow up screenings and 
referrals.

7. Evaluate the cost-effectiveness of the newly developed 
prediction models.
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Materials and methods

This study is an extension of the NELSON trial with focus 
on personalized outcome prediction (NELSON-POP). 
New data will be derived for the NELSON study that have 
thus far not been considered in predicting lung cancer and 
survival. Based on already available and these new data, 
multi-source prediction models for pre-screening and post-
baseline-screening participant selection and nodule discrim-
ination will be developed to enable personalized screening 
strategies (Fig. 1).

Population

The NELSON study is a Dutch-Belgian population-based, 
randomised controlled lung cancer screening trial. It has a 
follow up of 10 years after the screening rounds [4]. The 

study comprises 15,792 individuals 50–75 years old with 
a smoking history of over 15 cigarettes per day for more 
than 25 years or over 10 cigarettes per day for 30 years. 
Former smokers were included if they quit smoking ≤ 10 
years ago. Participants were randomized 1:1 in a screening 
and control group. Subjects who were selected for screening 
were invited to undergo low-dose CT scanning of the chest 
at subsequent intervals of 1, 2, and 2.5 years. Participants 
filled out questionnaires at the start of the trial and at follow 
up after 10 years.

This project will also include data from the Danish Lung 
Cancer Screening Trial (DLCST) [13], a randomised trial 
with similar nodule management protocol as in the NEL-
SON study. The DLCST compared annual CT screening for 
lung cancer with no screening in 4,104 individuals between 
the age of 50 and 70 years with a minimum smoking his-
tory of 20 pack-years, and had a follow-up of 5 years. The 
DLCST data will be pooled with the NELSON data for the 
evaluation of existing participant selection models and the 
development of the new model.

The results of this project will be externally validated 
using data of the 26,722 participants from the NLST CT arm 
aged 55 to 74 years, of whom 1701 were diagnosed with 
lung cancer [5].

Data collection and analysis

Multi-source prediction models will integrate genomic, 
environmental, imaging and individual characteristics data 
to select high-risk participants and high-risk lung nodules 
(Fig. 2).

Fig. 2 Multi-source prediction 
models that integrate genomic, 
environmental, imaging and 
individual characteristics data to 
select high-risk participants and 
high-risk lung nodules

 

Fig. 1 Screening strategy: top: current strategy, with same screen pro-
cedures for each screenee, and bottom: personalized approach imple-
menting the multi-source data
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cancer and survival will be evaluated using Area Under Pre-
cision-Recall Curve (PR AUC).

Lung nodule malignancy

To address the 3rd objective, specific lung nodule features 
will be measured and an AI-based malignancy risk score 
will be computed for the lung nodules in the NELSON 
cohort, including baseline and new lung nodules. During 
the NELSON scan rounds, all CT scans were analyzed with 
the use of dedicated software (LungCare, version Somaris/5 
VA70C-W, Siemens Medical Solutions). The analysis 
included semi-automated segmentation of all solid nod-
ules, yielding quantitative imaging features such as nodule 
volume, diameter and average density. To complete the set 
of quantitative imaging features for nodules in NELSON, 
a novel semi-automatic algorithm for segmentation of sub-
solid nodules [19] will be applied to the set of subsolid 
nodules.

A previously published AI-based nodule malignancy 
estimation algorithm [20] will be used to compute the 
malignancy risk score for all baseline and new lung nodules 
in NELSON. To compare the AI-score against the perfor-
mance of radiologists, an online observer study will be set 
up, in which radiologists will be asked to score the prob-
ability of lung cancer in a sample of NELSON lung nodules.

The performance of the AI-malignancy risk score will 
be compared to that of existing nodule risk models (Mayo 
Clinic model [21], PanCan model [22], UKLS model [23] 
and management guidelines for stratification, such as NLST 
[5], Lung-RADS, and the European Position paper [24]. 
The overall performance of the AI-risk score for lung nod-
ule malignancy discrimination will be tested and compared 
with the performance of existing risk models for lung nod-
ule discrimination, by measuring the AUC. Multi-reader, 
multi-case ROC analysis will be conducted to compare the 
readers score to the AI-risk score.

CT imaging biomarkers beyond lung nodules

To address the 4th objective, CT imaging biomarkers 
beyond lung nodules will be measured. Emphysema, coro-
nary calcification, bone density, vertebral height and body 
composition will be assessed on baseline and incident round 
CT scans using AI-Rad companion Chest (Siemens Health-
ineers). Emphysema will be expressed by 15th percentile 
Hounsfield units (HU) of low attenuation voxels (Perc15) 
and the percentage of low-attenuation voxels below 
− 950HU. For coronary calcification, the calcium volume 
score will be measured. The CT density (in HU) of thoracic 
vertebrae will be used as measure of bone density; height 
of the vertebrae will be measured to assess osteoporotic 

Genotyping

To address the 1st objective, genotyping of the NELSON 
CT-screening cohort will be completed. Of the NELSON 
CT screening cohort with blood sampling (N = 6,803), about 
40% has previously been genotyped with arrays. DNA 
genotyping of the remaining 60% will be conducted. This 
effort will provide a comprehensive genetic profile of the 
NELSON CT screening cohort, which can be used to assess 
the role of various genetic variations, to construct polygenic 
risk scores (PRSs). For lung cancer, the genetic variants 
identified by the most recent genome-wide association study 
(GWAS) will be combined [463 Single Nucleotide Poly-
morphisms (SNPs)] to allow maximum predictive power 
[14]. Similarly, a PRS for lung emphysema, an important 
risk factor for lung cancer, will be constructed using avail-
able GWAS data (125 SNPs) [14].

After array genotyping, the dataset will be imputed to 
reference data (i.e. the 1000 Genomes resource [15] and/
or the HRC haplotype reference consortium [16] and pos-
sibly TopMed [17] to harmonize, enhance and optimize the 
genotype content of the complete dataset. PRSs will be con-
structed for each participant by summing up all risk variants, 
weighted by variant effect size, as identified in prior GWAS 
studies. Raw PRS values will be z-transformed and used as 
a continuous predictor for lung cancer, using sex and smok-
ing status as additional covariates. PRS performance will be 
expressed as an odds ratio per z-unit (standard deviation of 
the PRS) on lung cancer, as well as areas under the precision 
recall area under the curve (PR AUC) for continuous PRS, 
sex and smoking status, and a combined model. Addition-
ally, risks of lung cancer in specific fractions of the PRS 
distribution relative to the average risk will be evaluated 
(e.g., cancer incidence in the highest/lowest 10% PRS of 
the NELSON population).

Environmental exposure

To address the 2nd objective, environmental data will be 
obtained, with a focus on air pollution that has demonstrated 
robust associations with risk of lung cancer. The following 
measures will be assessed: year average exposure (2000–
2019) to particulate matter [with aerodynamic diameter ≤ 2.5 
and ≤ 10 μm; particulate matter (PM)2.5 and PM10], ultra-
fine particles (≤ 100 nm), soot (i.e., PM2.5 absorbance), and 
nitrogen dioxide (NO2) [18].

Exposure to air pollution, as a measure of environmental 
risk, at the home address will be assessed. The collinear-
ity of potential predictors will be evaluated and penalized 
regression as well as Bayesian multi-pollutant mixture mod-
elling will be applied to estimate joint health effects. The 
predictive power of the environmental risk score for lung 
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specificity as secondary performance measures. To exter-
nally validate the new models, we will apply these on NLST 
data and evaluate the performance in predicting lung cancer 
and survival.

Cost-effectiveness model

To address the 7th objective, the cost-effectiveness of lung 
cancer screening based on the developed models will be 
evaluated. The SiMRiSc simulation model will be applied 
[30]. The outcomes will be: lung cancer mortality reduc-
tion, life-years gained, and incremental cost-effectiveness 
ratio. Tumor induction by the radiation from CT exposure 
will also be considered. The comparator will be the partici-
pant selection and screening efficiency as performed in the 
NELSON study.

In the cost-effectiveness model, one-way sensitivity anal-
yses will be carried out to explore parameter uncertainty of 
the most cost-effective scenario at the assumed threshold 
per life year gained. The baseline values of the input param-
eters will be varied by an increase and decrease of two stan-
dard deviations for the base case analysis.

Ethics statement

The original NELSON study was conducted with the 
approval of the Dutch Minister of Health after positive 
advice from the Dutch Health Council and by the Ethi-
cal Boards of the participating centers [4]. This study falls 
within the scope of the original informed consent in which 
side studies are allowed.

Expected results

Of 7,135 participants in the NELSON CT-screening arm, 
390 (5.5%) developed lung cancer over 10-years follow 
up. Combined with the DLCST data, the total number of 
screened participants is 11,239, of whom 490 (4.4%) were 
diagnosed with lung cancer during the screening rounds or 
during follow-up.

The following outcomes are expected to be obtained: 
polygenic risk scores and air pollution as measures of 
genetic and environmental risk, the AI malignancy score 
for all lung nodules, and other CT imaging biomarkers. 
All new measures will be related to lung cancer risk and 
survival, and predictive measures will be included in new 
participant selection and nodule discrimination models. The 
newly developed models will be applied on the combined 
data from the NELSON study and DLCST where possible. 
The new multi-source models for participant selection and 
lung nodule discrimination will be externally validated on 

fractures [25]. Body composition will be evaluated as areas 
of subcutaneous fat and muscle, that will be semi-automati-
cally measured with in-house developed software [26].

In a subset of 250 subjects with a short-term repeat CT, 
AI-based segmentations of baseline and short-term repeat 
CT scans will be visually checked for accuracy. The AI-
software will be run on the baseline and short-term interval 
scan to re-evaluate the biomarkers, and assess repeatability 
and inter-scan variability. Based on the results, rules will be 
derived for checking AI results in the remaining NELSON 
scans. In addition, randomly AI segmentations/results will 
be visually checked for every 1 in 100 scans.

Risk models

To address the 5th and 6th objectives, multi-source predic-
tion models will be developed for (1) selecting participants 
at the highest risk of lung cancer for CT screening, and (2) 
optimized lung nodule discrimination. Both models will be 
developed for baseline and incident screening rounds using 
combined data from NELSON and DLCST studies where 
possible. For developing the model for participant selection 
at baseline, the data from self-report questionnaires, genetic 
and environmental risk scores will be used. For the incident 
rounds, the participant selection model will also include 
AI-risk score for lung nodule malignancy and CT imaging 
biomarkers beyond lung nodules. For developing the model 
for lung nodule discrimination at baseline, the aforemen-
tioned data for the participant selection model will be com-
bined with AI-risk score for lung nodule malignancy and CT 
imaging biomarkers beyond lung nodules, as well as lung 
function results (available in a NELSON subset).

Machine-learning methods will be applied to (re)clas-
sify lung cancer risk and nodule discrimination after each 
round, using generated and existing participant/nodule 
information. Logistic regression will be compared with off-
the-shelf machine-learning methods such as support vector 
machines and gradient boosted trees. To rank the classifi-
cation models, we will use the average PR AUC from the 
outer cross-validation loop and compare the F1 score as a 
secondary performance measure. Shapley values will be 
used to uncover the importance of the input variables to 
explain the predictions of the machine-learning models. The 
performance of the new model for participant selection will 
be compared with the NELSON inclusion criteria and with 
existing validated models for participant selection, includ-
ing PLCOm2012, LLP, Bach model, LCRAT and Two Stage 
Clonal Expansion Incidence Model [9, 27–29]. The perfor-
mance of the new lung nodule discrimination model will 
be compared to the original and updated NELSON model. 
The performance will be primarily evaluated by looking at 
changes in the PR AUC, and by precision, sensitivity, and 
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Discussion

Although lung cancer screening has shown to be effective 
in saving lives, a better selection of participants and dis-
crimination of detected pulmonary nodules is of utmost 
importance to save costs and reduce burden of the partici-
pants. The goal of this project is to develop multi-source 
risk prediction models for personalized risk assessment and 
lung nodule stratification, thus optimizing the efficiency of 
lung cancer screening. To achieve that goal, this project is 
the first focused on integrating multi-source data from dif-
ferent domains going beyond individual and lung nodule 
characteristics. It means that static (such as genetic) and 
dynamic risk markers (such as imaging, environmental and 
behavioral markers) will be integrated, not only for baseline 
screening (selection) but also for continued screening.

PRS is one of the risk markers having the potential for 
improving lung cancer risk assessment, that will be inte-
grated in the multi-source model of this study. A recent 
study from the UK showed modest improvement for lung 
cancer discrimination when integrating a PRS into a risk 
model for lung cancer screening [33], but it was not aimed 
at lung cancer specifically. Another study developed a PRS 
for lung cancer consisting of 19 SNPs have shown promis-
ing stratification of low and high-risk individuals (two-fold 
increased risk), beyond known predictors [10]. Since recent 
large-scale GWAS has now uncovered > 100 genetic asso-
ciations with lung cancer, improved lung cancer PRSs are 
under construction [14]. PRSs can also be constructed for 
several risk factors for lung cancer, e.g., lung emphysema 
or DNA repair defects, which could be added into an inte-
grated PRS for lung cancer.

In this study, a detailed data on air pollution derived from 
the postcode data of participants will be used. Air pollution 
is another established marker of lung cancer risk [34], that 
will be integrated in this study. A pooled analysis of data 
from 7 European countries showed that PM2.5 exposure is 
related to lung cancer incidence. The report of Global Bur-
den of Disease from 2017 showed that about 14% of all lung 
cancer deaths can be attributed to outdoor air pollution [35].

Imaging algorithms based on deep learning have great 
potential to perform more reproducible and more objective 
image pattern recognition as compared to radiologist evalu-
ation of nodule characteristics visible with the naked eye, 
and thereby may increase the precision and consistency of 
lung nodule discrimination. This increased precision can 
be used to develop optimized follow-up protocols, leading 
to fewer unnecessary follow-up CTs and referrals in lung 
cancer screening, and possibly, to earlier referral of suspi-
cious lung nodules. Several papers and high profile chal-
lenges have shown the potential of AI for lung nodule 
malignancy estimation [36–38]. Consortium partners of the 

the NLST data. The cost-effectiveness of these prediction 
models will also be assessed.

The first model this study aims to develop, is for stricter 
selection of screening participants based on risk of lung 
cancer and sufficient life expectancy. In the NELSON CT-
screening arm, the vast majority (82%) of deceased partici-
pants died from other causes than lung cancer [4]. Analysis 
of NLST data showed 8 times lower lung cancer risk for 
participants at the lowest risk decile as compared to the 
highest risk decile [31]. One study showed that pre-screen-
ing selection based on life-years gained instead of risk, 
elevated life expectancy per screen-detected lung cancer by 
7%, and reduced the number of screenees by 8.2% [32]. A 
risk model based on participant characteristics, compared to 
age and smoking pack-year criteria alone, prevented 20% 
more lung cancer deaths, combined with 17% decrease in 
number needed to screen [29]. The new model for partici-
pant selection using the data extracted within this project, 
such as air pollution and additional self-reported data, aims 
to reclassify the lung cancer risk and reconsider the decision 
to screen after each screening round.

This project will for the first time integrate CT features 
for post-baseline-screening participant selection to recali-
brate the predictive model and determine whether continu-
ing screening is of benefit. Based on estimates from previous 
studies [29, 31, 32], we hypothesize that the new model for 
participant selection will identify 15–20% participants with 
a low risk of lung cancer or short life expectancy, who will 
not benefit from lung cancer screening. This approach may 
prevent ~ 140,000 Dutch individuals from being screened 
unnecessarily, when lung cancer screening is implemented 
in the Netherlands.

To reduce the burden for those eventually selected for 
screening, a better method is needed to select CT-detected 
nodules with sufficiently high malignancy risk that would 
warrant short-term repeat CT or referral to a pulmonologist. 
In the NELSON study, 1.6% and 19.2% participants had 
positive or indeterminate results at baseline, respectively. 
Eventually, 95.5% of them tested negative for lung cancer. 
A study [8] showed that nodule characteristics combined 
with presence of emphysema (yes/no) in addition to nodule 
size improved the specificity of lung nodule discrimination 
by 8–10% (taken a recalculated NELSON specificity of 
78–80%, this could increase the specificity to 88–90%). The 
new model combining the lung nodule information with 
the other data extracted within this project aims to better 
discriminate benign and malignant lung nodules at baseline 
and incident screening rounds. We hypothesize that our pre-
diction model for lung nodule stratification will improve the 
specificity by ~ 10% without loss of sensitivity as compared 
to nodule size only, and reduce unnecessary work-up by 
40–50%.
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The results of this project will be crucial to contribute to 
a sustainable, accessible and affordable healthcare system 
if lung cancer screening is implemented. An efficient lung 
cancer screening program will potentially also reduce the 
use of expensive therapies, which thus may have a positive 
effect on the costs associated with lung cancer care overall 
[46, 47]. The front-runner position in lung cancer screening 
research and virtual research infrastructure, combined with 
the important data sources that will be added to existing 
lung cancer screening data within this project, will create an 
attractive environment for more researchers and companies 
to collaborate and use NELSON data. This will contribute to 
further research and optimization in lung cancer screening.
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NELSON-POP project have developed an AI algorithm for 
nodule malignancy estimation using a large dataset of lung 
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Lung Cancer Screening Trial (DLCST) [13]. The AI algo-
rithm outperformed the PanCan model and performed com-
parable to thoracic radiologists [20].

So far, CT-based lung cancer screening has mainly 
focused on lung nodule detection and management. How-
ever, imaging biomarkers beyond lung nodule assessment, 
related to emphysema, coronary calcification, bone density, 
vertebral height and body composition, may assist in dis-
criminating risk of lung nodule malignancy and mortality, 
potentially enhancing its cost-effectiveness [39]. Moreover, 
these biomarkers may give insight about survival time to 
such extent that continued lung cancer screening may not 
be an effective option. Emphysema has been found to be an 
independent risk factor for development of lung cancer and 
for mortality [39]. In NELSON, the extent of emphysema 
on screening CT scans was found related to lung function 
decline and to the development of clinical signs of COPD 
[40]. The amount of coronary calcification as expressed in 
a calcium score is strongly related to cardiovascular events 
and mortality. Previous NELSON results showed that an 
increase in coronary calcium volume of 500 mm3 increased 
risk of cardiovascular events in 3 years by 46% [41], and 
that coronary calcium in lung cancer screening CT scans 
predicts all-cause mortality [42]. Smoking is a known, inde-
pendent risk factor for osteoporosis. In a NELSON subset, 
CT-determined osteoporosis was shown to be an indepen-
dent risk factor for all-cause mortality [43]: the adjusted 
hazard ratio for each 10 HU decline in bone density was 1.1 
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might further improving participant selection in lung cancer 
screening CT scanning.

The application of automated AI algorithms for bio-
marker quantification reduces measurement variability and 
saves time, especially in large datasets such as the NELSON 
database [25, 44]. The Siemens AI-Rad Companion will be 
used for assessment of emphysema, coronary calcifications 
and bone measurements. Recent validation studies showed 
a strong correlation of AI-Rad Companion-based emphy-
sema quantification with spirometry results in smokers with 
and without COPD [44], and between bone density mea-
surements and osteoporosis assessment [25]; and coronary 
calcium measures showed good correlation to standards of 
reference [45]. For body composition, an in-house (UMCU) 
developed automated AI algorithm will be used. Although 
not (yet) CE-marked, we have performed these measure-
ments successfully in non-contrast CT scans and now have 
measurements in more than 1000 subjects [26].
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