50 research outputs found

    The Molecular And Evolutionary Determinants Of Hostswitching Viruses

    Full text link
    Emerging infectious diseases represent imminent threats to human and animal health worldwide and can impose immense economic burdens, particularly on the world's most impoverished regions. Cross-species transmission of pathogens represents a common path towards disease emergence, but the mechanisms that lead to successful host jumping are incompletely understood. Here I have addressed some of the pathogen-associated factors involved in successful host jumping and have analyzed the evolutionary dynamics of the novel pathogen in the new host after cross-species transfer. These studies were performed using two emerging diseases of dogs: Canine Parvovirus (CPV) and Canine Influenza virus (CIV). While CPV emerged in the mid-1970s from an endemic virus of cats and has since become endemic in the global dog population, CIV was first described as a pathogen of dogs in 2004 - thus representing a new, likely not completely hostadapted virus. Contrasting the evolutionary dynamics of these two pathogens which share the same host species allowed a powerful analysis of the determinants and risk factors for disease emergence. In particular, I focused these studies on understanding the viral population dynamics in infected animals - contrasting where applicable the dynamics in the novel and the ancesteral host species, and dissecting host-associated effects and the impact of cross-immunity. For the case of CPV, I further analyzed the evolutionary dynamics of the novel virus on a population level since its emergence contrasting those to the dynamics observed in the ancesteral virus. Finally, I analyzed the effect of potentially host-specific codon usage and codon usage bias for the evolution of CPV. Because CpG methylation might represent an important driver of codon bias in the CPV genome, some work was dedicated to obtain a more comprehensive understanding of this major driver in DNA virus evolution. The results presented here show similarities but also marked differences between the evolutionary dynamics of CPV and CIV, and between the novel and ancesteral viruses. Further research is needed but it appears that key drivers differ between pathogens and between time intervals after emergence. However, some common mechanisms appear to be shared between viruses and others appear conserved between hosts

    Animal models of listeriosis: a comparative review of the current state of the art and lessons learned

    Get PDF
    Listeriosis is a leading cause of hospitalization and death due to foodborne illness in the industrialized world. Animal models have played fundamental roles in elucidating the pathophysiology and immunology of listeriosis, and will almost certainly continue to be integral components of the research on listeriosis. Data derived from animal studies helped for example characterize the importance of cell-mediated immunity in controlling infection, allowed evaluation of chemotherapeutic treatments for listeriosis, and contributed to quantitative assessments of the public health risk associated with L. monocytogenes contaminated food commodities. Nonetheless, a number of pivotal questions remain unresolved, including dose-response relationships, which represent essential components of risk assessments. Newly emerging data about species-specific differences have recently raised concern about the validity of most traditional animal models of listeriosis. However, considerable uncertainty about the best choice of animal model remains. Here we review the available data on traditional and potential new animal models to summarize currently recognized strengths and limitations of each model. This knowledge is instrumental for devising future studies and for interpreting current data. We deliberately chose a historical, comparative and cross-disciplinary approach, striving to reveal clues that may help predict the ultimate value of each animal model in spite of incomplete data

    Animal contact as a source of human non-typhoidal salmonellosis

    Get PDF
    Non-typhoidal Salmonella represents an important human and animal pathogen world-wide. Most human salmonellosis cases are foodborne, but each year infections are also acquired through direct or indirect animal contact in homes, veterinary clinics, zoological gardens, farm environments or other public, professional or private settings. Clinically affected animals may exhibit a higher prevalence of shedding than apparently healthy animals, but both can shed Salmonella over long periods of time. In addition, environmental contamination and indirect transmission through contaminated food and water may complicate control efforts. The public health risk varies by animal species, age group, husbandry practice and health status, and certain human subpopulations are at a heightened risk of infection due to biological or behavioral risk factors. Some serotypes such as Salmonella Dublin are adapted to individual host species, while others, for instance Salmonella Typhimurium, readily infect a broad range of host species, but the potential implications for human health are currently unclear. Basic hygiene practices and the implementation of scientifically based management strategies can efficiently mitigate the risks associated with animal contacts. However, the general public is frequently unaware of the specific disease risks involved, and high-risk behaviors are common. Here we describe the epidemiology and serotype distribution of Salmonella in a variety of host species. In addition, we review our current understanding of the public health risks associated with different types of contacts between humans and animals in public, professional or private settings, and, where appropriate, discuss potential risk mitigation strategies

    Strategic Priorities for Research on Antibiotic Alternatives in Animal Agriculture—Results From an Expert Workshop

    Get PDF
    The emergence, spread, and expansion of antibiotic resistance and increasing restrictions on the use of antibiotics in animal agriculture have created a need for efficacious alternatives that remains unmet. Prioritizing research needs in the development of alternatives is key to ensuring that scarce research resources are dedicated to the most promising approaches. However, frameworks to enable a consistent, systematic, and transparent evaluation of antibiotic alternative candidates are lacking. Here, we present such an evaluation framework

    Vaccines as alternatives to antibiotics for food producing animals. Part 1:challenges and needs

    Get PDF
    Vaccines and other alternative products can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations, and are central to the future success of animal agriculture. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, part of a two-part series, synthesizes and expands on the expert panel discussions regarding opportunities, challenges and needs for the development of vaccines that may reduce the need for use of antibiotics in animals; new approaches and potential solutions will be discussed in part 2 of this series. Vaccines are widely used to prevent infections in food animals. Various studies have demonstrated that their animal agricultural use can lead to significant reductions in antibiotic consumption, making them promising alternatives to antibiotics. To be widely used in food producing animals, vaccines have to be safe, effective, easy to use, and cost-effective. Many current vaccines fall short in one or more of these respects. Scientific advancements may allow many of these limitations to be overcome, but progress is funding-dependent. Research will have to be prioritized to ensure scarce public resources are dedicated to areas of potentially greatest impact first, and private investments into vaccine development constantly compete with other investment opportunities. Although vaccines have the potential to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks, targeted research and development investments and concerted efforts by all affected are needed to realize that potential

    Genome sequencing reveals diversification of virulence factor content and possible host adaptation in distinct subpopulations of Salmonella enterica

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Divergence of bacterial populations into distinct subpopulations is often the result of ecological isolation. While some studies have suggested the existence of <it>Salmonella enterica </it>subsp. <it>enterica </it>subclades, evidence for these subdivisions has been ambiguous. Here we used a comparative genomics approach to define the population structure of <it>Salmonella enterica </it>subsp. <it>enterica</it>, and identify clade-specific genes that may be the result of ecological specialization.</p> <p>Results</p> <p>Multi-locus sequence analysis (MLSA) and single nucleotide polymorphisms (SNPs) data for 16 newly sequenced and 30 publicly available genomes showed an unambiguous subdivision of <it>S. enterica </it>subsp. <it>enterica </it>into at least two subpopulations, which we refer to as clade A and clade B. Clade B strains contain several clade-specific genes or operons, including a β-glucuronidase operon, a S-fimbrial operon, and cell surface related genes, which strongly suggests niche specialization of this subpopulation. An additional set of 123 isolates was assigned to clades A and B by using qPCR assays targeting subpopulation-specific SNPs and genes of interest. Among 98 serovars examined, approximately 20% belonged to clade B. All clade B isolates contained two pathogenicity related genomic islands, SPI-18 and a cytolethal distending toxin islet; a combination of these two islands was previously thought to be exclusive to serovars Typhi and Paratyphi A. Presence of β-glucuronidase in clade B isolates specifically suggests an adaptation of this clade to the vertebrate gastrointestinal environment.</p> <p>Conclusions</p> <p><it>S. enterica </it>subsp. <it>enterica </it>consists of at least two subpopulations that differ specifically in genes involved in host and tissue tropism, utilization of host specific carbon and nitrogen sources and are therefore likely to differ in ecology and transmission characteristics.</p

    The emergence of parvoviruses of carnivores

    Get PDF
    The emergence of canine parvovirus (CPV) represents a well-documented example highlighting the emergence of a new virus through cross-species transmission. CPV emerged in the mid-1970s as a new pathogen of dogs and has since become endemic in the global dog population. Despite widespread vaccination, CPV has remained a widespread disease of dogs, and new genetic and antigenic variants have arisen and sometimes reached high frequency in certain geographic regions or throughout the world. Here we review our understanding of this emergence event and contrast it to what is known about the emergence of a disease in mink caused by mink enteritis virus (MEV). In addition, we summarize the evolution of CPV over the past 30 years in the global dog population, and describe the epidemiology of contemporary parvovirus infections of dogs and cats. CPV represents a valuable model for understanding disease emergence through cross-species transmission, while MEV provides an interesting comparison

    viruses of animals

    No full text
    Presence and role of cytosine methylation in DN
    corecore