72 research outputs found

    Mechanism for the Combined Li-Na Ionic Conductivity in Sugilite (Fe2Na2KLi3Si12O30)-Type Compounds

    Get PDF
    This study explains the ionic conductivity in the mineral sugilite (idealized formula: Fe2Na2KLi3Si12O30) by resolving the dynamic disorder of both Li and Na cations using synchrotron X-ray single-crystal diffraction from 298 K to 1023 K. Non-zero anharmonic atomic displacement parameters at Na and Li sites at 1023 K adumbrated long-range charge transport routes for Li and Na cations commonly parallel to the (a-b) plane. Temperature-enhanced diffuse residuals in Fourier maps could unambiguously localize two interstitial sites suitable for Li, as well as three for Na. Each two-dimensional (2D) network of Li and Na interstitials was formed parallel to each other, providing Li and Na hopping pathways. The higher concentration of Na cations hopping in short distances of 2.0962(4)-2.3015(5) Å could be the main reason for the higher bulk conductivity values evaluated by impedance spectra of sugilite in comparison to those of its structural relatives with low Na contents, e.g., the mineral sogdianite ((Zr,Al,Fe)2Na0.36KLi3Si12O30). Bond valence sum landscape maps supported the critical role of dynamic disorder of Na+ over densely packed 2D interstitial networks for combined ionic conductivity along with mobile Li+ in sugilite-type compounds

    Structural Investigation into Magnetic Spin Orders of a Manganese Phosphatic Oxyhydroxide, Mn5(PO4)2(PO3(OH))2(HOH)4

    Get PDF
    The ferri- and antiferromagnetic structures of a hureaulite-type synthetic compound, Mn2+5(PO4)2(PO3(OH))2(HOH)4, were elucidated by high-resolution neutron powder diffraction in combination with magnetic susceptibility and heat capacity measurements. At 6.17 K, the paramagnetic phase (space group: C2/c) transforms to inherit a ferrimagnetic order (magnetic space group: C2'/c'), followed at 1.86 K by an incommensurately modulated antiferromagnetic order (magnetic superspace group: P21/c.1'(α0γ)00s with the propagation vector k(0.523(2), 0, 0.055(1)). In the ferrimagnetic state, antiferromagnetic interactions are dominant for both intra and inter pentamers of Mn2+(O, HOH)6 octahedra. Differently aligned spin-canting sublattices seen in the ferrimagnetic models at 3.4, 4.5, and 6.1 K explain a weak ferromagnetism in the title compound. The observation of magnetic moments vigorously changing in a small temperature range of 6.1-1.5 K adumbrates a high complexity of interplaying structural and magnetic orders in this manganese phosphatic oxyhydroxide

    Kinetics of Martensite Decomposition and Microstructure Stability of Ti-6246 during Rapid Heating to Service Temperatures

    Get PDF
    The aerospace alloy Ti-6246 was subjected to inductive heat treatments with high heating and quenching rates (up to 1500 K/s) while being applied to an in situ diffraction study at the HEMS beamline P07B at DESY. Thereby, the characterization of the emerging phases was possible at any point in the process. The heat treatment schedules include the preparation of Ti-6246 samples by means of a homogenization treatment and subsequent quenching to trigger α″-martensite formation. In order to simulate fast reheating within the scope of application, the samples were reheated to the upper range of possible service temperatures (550–650 °C) with a heating rate of 100 K/s. In a second heat treatment design, the homogenized and quenched sample state was exposed to high-temperature tempering at 840 °C, which aims for the elimination of α″. Again, fast reheating to the same service temperatures was executed. With the aim of this approach, the stability of the microstructure consisting of α-Ti, β-Ti and α″-martensite was characterized. Further, the martensite decomposition path was analyzed. It shows a two-tier nature, firstly approaching the bcc β-unit cell in the low-temperature range (<400 °C) but subsequently transforming into an hcp-like unit cell and later on into equilibrium α-Ti

    Diffraction-based determination of single-crystal elastic constants of polycrystalline titanium alloys

    Get PDF
    Single-crystal elastic constants have been derived by lattice strain measurements using neutron diffraction on polycrystalline Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo and Ti-3Al-8V-6Cr-4Zr-4Mo alloy samples. A variety of model approximations for the grain-to-grain interactions, namely approaches by Voigt, Reuss, Hill, Kroener, de Wit and Matthies, including texture weightings, have been applied and compared. A load-transfer approach for multiphase alloys was also implemented and the results are compared with single-phase data. For the materials under investigation, the results for multiphase alloys agree well with the results for single-phase materials in the corresponding phases. In this respect, all eight elastic constants in the dual-phase Ti-6Al-2Sn-4Zr-6Mo alloy have been derived for the first time

    The A-cation deficient perovskite series La<sub>2-x</sub>CoTiO<sub>6-δ</sub> (0 ≤ x ≤ 0.20): new components for potential SOFC composite cathodes

    Get PDF
    The best performances are obtained for low x due to a compromise between sufficiently high amount of defects, but not so high to induce defect clustering.</p

    Field-induced phase transition in Bi1/2Na1/2TiO3-based lead-free piezoelectric ceramics

    Get PDF
    The origin of the electric field-induced strain in the polycrystalline ceramic 0.92Bi(1/2)Na(1/2)TiO(3)-0.06BaTiO(3)-0.02K(1/2)Na(1/2)NbO(3) was investigated using in situ high-resolution X-ray and neutron diffraction techniques. The initially existing tetragonal phase with pseudocubic lattice undergoes a reversible phase transition to a significantly distorted rhombohedral phase under electric field, accompanied by a change in the oxygen octahedral tilting from a 0 a 0 c + to a - a - a - and in the tilting angle. The polarization values for the tetragonal and rhombohedral phases were calculated based on the structural information from Rietveld refinements. The large recoverable electric field-induced strain is a consequence of a reversible electric field-induced phase transition from an almost nonpolar tetragonal phase to a ferroelectrically active rhombohedral phase.open686

    SPODI: High resolution powder diffractometer

    No full text
    The high resolution powder diffractometer SPODI (jointly operated by the Karlsruhe Institute of Technology and the Technische Universität München) is designed for structure solution and Rietveld refinement of crystal and magnetic structural parameters on polycrystalline powders. Instrumental specification (design, flexibility, peak shape, resolution etc.) as well as a variety of specialized sample environment equipment implemented for in-situ materials characterisation make the instrument attractive for studies of complex ordering phenomena.
    corecore