205 research outputs found

    Violation of Boltzmann Equipartition Theorem in Angular Phonon Phase Space Slows down Nanoscale Heat Transfer in Ultrathin Heterofilms

    Get PDF
    Heat transfer through heterointerfaces is intrinsically hampered by a thermal boundary resistance originating from the discontinuity of the elastic properties. Here, we show that with shrinking dimensions the heat flow from an ultrathin epitaxial film through atomically flat interfaces into a single crystalline substrate is significantly reduced due to violation of Boltzmann equipartition theorem in the angular phonon phase space. For films thinner than the phonons mean free path, we find phonons trapped in the film by total internal reflection, thus suppressing heat transfer. Repopulation of those phonon states, which can escape the film through the interface by transmission and refraction, becomes the bottleneck for cooling. The resulting nonequipartition in the angular phonon phase space slows down the cooling by more than a factor of 2 compared to films governed by phonons diffuse scattering. These allow tailoring of the thermal interface conductance via manipulation of the interface

    Selecting a single orientation for millimeter sized graphene sheets

    Get PDF
    We have used Low Energy Electron Microscopy (LEEM) and Photo Emission Electron Microscopy (PEEM) to study and improve the quality of graphene films grown on Ir(111) using chemical vapor deposition (CVD). CVD at elevated temperature already yields graphene sheets that are uniform and of monatomic thickness. Besides domains that are aligned with respect to the substrate, other rotational variants grow. Cyclic growth exploiting the faster growth and etch rates of the rotational variants, yields films that are 99 % composed of aligned domains. Precovering the substrate with a high density of graphene nuclei prior to CVD yields pure films of aligned domains extending over millimeters. Such films can be used to prepare cluster-graphene hybrid materials for catalysis or nanomagnetism and can potentially be combined with lift-off techniques to yield high-quality, graphene based electronic devices

    Surface Morphology and Strain Relief in Surfactant Mediated Growth of Germanium on Silicon (111)

    Get PDF
    The growth of Ge on Si is strongly modified by adsorbates called surfactants. The relevance of the stress on surface morphology and the growth mode of Ge on Si(111) is presented in a detailed in situ study by high resolution low energy electron diffraction (LEED) during the deposition. The change from islanding to layer-by-layer growth mode is seen in the oscillatory intensity behaviour of the 00-spot. As a strain relief mechanism, the Ge-film forms a microscopic rough surface of small triangular and defect-free pyramids in the pseudomorphic growth regime up to 8 monolayers. As soon as the pyramids are completed and start to coalesce, strain relieving defects are created at their base, finally arranging to the dislocation network. Without the driving force for the micro-roughness, the stress, the surface flattens again showing a much larger terrace length. The formation process of the dislocation network results in a spot splitting in LEED, since the periodic dislocations at the interface give rise to elastic deformation of the surface. Surprisingly the Ge-film is relaxed to 70% immediately after 8 monolayers of coverage, which is attributed to the micro rough surface morphology, providing innumerous nucleation sites for dislocation

    QualitySNPng: a user-friendly SNP detection and visualization tool

    Get PDF
    QualitySNPng is a new software tool for the detection and interactive visualization of single-nucleotide polymorphisms (SNPs). It uses a haplotype-based strategy to identify reliable SNPs; it is optimized for the analysis of current RNA-seq data; but it can also be used on genomic DNA sequences derived from next-generation sequencing experiments. QualitySNPng does not require a sequenced reference genome and delivers reliable SNPs for di- as well as polyploid species. The tool features a user-friendly interface, multiple filtering options to handle typical sequencing errors, support for SAM and ACE files and interactive visualization. QualitySNPng produces high-quality SNP information that can be used directly in genotyping by sequencing approaches for application in QTL and genome-wide association mapping as well as to populate SNP arrays. The software can be used as a stand-alone application with a graphical user interface or as part of a pipeline system like Galaxy. Versions for Windows, Mac OS X and Linux, as well as the source code, are available fro

    In situ observation of stress relaxation in epitaxial graphene

    Get PDF
    Upon cooling, branched line defects develop in epitaxial graphene grown at high temperature on Pt(111) and Ir(111). Using atomically resolved scanning tunneling microscopy we demonstrate that these defects are wrinkles in the graphene layer, i.e. stripes of partially delaminated graphene. With low energy electron microscopy (LEEM) we investigate the wrinkling phenomenon in situ. Upon temperature cycling we observe hysteresis in the appearance and disappearance of the wrinkles. Simultaneously with wrinkle formation a change in bright field imaging intensity of adjacent areas and a shift in the moire spot positions for micro diffraction of such areas takes place. The stress relieved by wrinkle formation results from the mismatch in thermal expansion coefficients of graphene and the substrate. A simple one-dimensional model taking into account the energies related to strain, delamination and bending of graphene is in qualitative agreement with our observations.Comment: Supplementary information: S1: Photo electron emission microscopy and LEEM measurements of rotational domains, STM data of a delaminated bulge around a dislocation. S2: Movie with increasing brightness upon wrinkle formation as in figure 4. v2: Major revision including new experimental dat

    Model of surface instabilities induced by stress

    Full text link
    We propose a model based on a Ginzburg-Landau approach to study a strain relief mechanism at a free interface of a non-hydrostatically stressed solid, commonly observed in thin-film growth. The evolving instability, known as the Grinfeld instability, is studied numerically in two and three dimensions. Inherent in the description is the proper treatment of nonlinearities. We find these nonlinearities can lead to competitive coarsening of interfacial structures, corresponding to different wavenumbers, as strain is relieved. We suggest ways to experimentally measure this coarsening.Comment: 4 pages (3 figures included

    Optical Stabilization of Fluctuating High Temperature Ferromagnetism in YTiO<sub>3</sub>

    Get PDF
    In quantum materials, degeneracies and frustrated interactions can have a profound impact on the emergence of long-range order, often driving strong fluctuations that suppress functionally relevant electronic or magnetic phases. Engineering the atomic structure in the bulk or at heterointerfaces has been an important research strategy to lift these degeneracies, but these equilibrium methods are limited by thermodynamic, elastic, and chemical constraints. Here, we show that all-optical, mode-selective manipulation of the crystal lattice can be used to enhance and stabilize high-temperature ferromagnetism in YTiO3, a material that exhibits only partial orbital polarization, an unsaturated low-temperature magnetic moment, and a suppressed Curie temperature, Tc = 27 K. The enhancement is largest when exciting a 9 THz oxygen rotation mode, for which complete magnetic saturation is achieved at low temperatures and transient ferromagnetism is realized up to Tneq> 80 K, nearly three times the thermodynamic transition temperature. First-principles and model calculations of the nonlinear phonon-orbital-spin coupling reveal that these effects originate from dynamical changes to the orbital polarization and the makeup of the lowest quasi-degenerate Ti t2g levels. Notably, light-induced high temperature ferromagnetism in YTiO3 is found to be metastable over many nanoseconds, underscoring the ability to dynamically engineer practically useful non-equilibrium functionalities

    Optical Stabilization of Fluctuating High Temperature Ferromagnetism in YTiO3_3

    Full text link
    In quantum materials, degeneracies and frustrated interactions can have a profound impact on the emergence of long-range order, often driving strong fluctuations that suppress functionally relevant electronic or magnetic phases. Engineering the atomic structure in the bulk or at heterointerfaces has been an important research strategy to lift these degeneracies, but these equilibrium methods are limited by thermodynamic, elastic, and chemical constraints. Here, we show that all-optical, mode-selective manipulation of the crystal lattice can be used to enhance and stabilize high-temperature ferromagnetism in YTiO3_3, a material that exhibits only partial orbital polarization, an unsaturated low-temperature magnetic moment, and a suppressed Curie temperature, TcT_c = 27 K. The enhancement is largest when exciting a 9 THz oxygen rotation mode, for which complete magnetic saturation is achieved at low temperatures and transient ferromagnetism is realized up to Tneq>T_{neq} > 80 K, nearly three times the thermodynamic transition temperature. First-principles and model calculations of the nonlinear phonon-orbital-spin coupling reveal that these effects originate from dynamical changes to the orbital polarization and the makeup of the lowest quasi-degenerate Ti t2gt_{2g} levels. Notably, light-induced high temperature ferromagnetism in YTiO3_3 is found to be metastable over many nanoseconds, underscoring the ability to dynamically engineer practically useful non-equilibrium functionalities.Comment: 14 pages, 4 figure
    corecore