345 research outputs found
Policy Considerations in Revitalizing Local and Regional Food Systems
Agricultural Finance, Political Economy,
Thresholds for the Dust Driven Mass Loss from C-rich AGB Stars
It is well established that mass loss from AGB stars due to dust driven winds
cannot be arbitrarily low. We model the mass loss from carbon rich AGB stars
using detailed frequency-dependent radiation hydrodynamics including dust
formation. We present a study of the thresholds for the mass loss rate as a
function of stellar parameters based on a subset of a larger grid of such
models and compare these results to previous observational and theoretical
work. Furthermore, we demonstrate the impact of the pulsation mechanism and
dust formation for the creation of a stellar wind and how it affects these
thresholds and briefly discuss the consequences for stellar evolution.Comment: 2 pages, 1 figure. To be published in the proceedings of IAU Symp.
241 on Stellar Populations as Building Blocks of Galaxies, ed. A. Vazdekis et
al. (2007). Replaced to match edited versio
Uni-directional polymerization leading to homochirality in the RNA world
The differences between uni-directional and bi-directional polymerization are
considered. The uni-directional case is discussed in the framework of the RNA
world. Similar to earlier models of this type, where polymerization was assumed
to proceed in a bi-directional fashion (presumed to be relevant to peptide
nucleic acids), left-handed and right-handed monomers are produced via an
autocatalysis from an achiral substrate. The details of the bifurcation from a
racemic solution to a homochiral state of either handedness is shown to be
remarkably independent of whether the polymerization in uni-directional or
bi-directional. Slightly larger differences are seen when dissociation is
allowed and the dissociation fragments are being recycled into the achiral
substrate.Comment: 9 pages, 4 figures, submitted to Astrobiolog
Dust grain properties in atmospheres of AGB stars
We present self-consistent dynamical models for dust driven winds of
carbon-rich AGB stars. The models are based on the coupled system of
frequency-dependent radiation hydrodynamics and time-dependent dust formation.
We investigate in detail how the wind properties of the models are influenced
by the micro-physical properties of the dust grains that enter as parameters.
The models are now at a level where it is necessary to be quantitatively
consistent when choosing the dust properties that enters as input into the
models. At our current level of sophistication the choice of dust parameters is
significant for the derived outflow velocity, the degree of condensation and
the estimated mass loss rates of the models. In the transition between models
with and without mass-loss the choice ofmicro-physical parameters turns out to
be very significant for whether a particular set of stellar parameters will
give rise to a dust-driven mass loss or not.Comment: 10 pages, 3 figures. To appear in: Modelling of Stellar Atmospheres,
N.E. Piskunov, W.W. Weiss, D.F. Gray (eds.), IAU Symposium Vol. xxx.
Proceedings for the IAU Symposium 210, Uppsala, June 200
The influence of dust properties on the mass loss in pulsating AGB stars
We are currently studying carbon based dust types of relevance for
carbon-rich AGB stars, to obtain a better understanding of the influence of the
optical and chemical properties of the grains on the mass loss of the star. An
investigation of the complex interplay between hydrodynamics,radiative transfer
and chemistry has to be based on a better knowledge of the micro-physics of the
relevant dust species.Comment: 4 pages, 2 figures. Proceedings for IAU Colloquium 185 "Radial and
Nonradial Pulsations as Probes of Stellar Physics
Synthetic Line Profiles for Pulsating Red Giants
Pulsation influences atmospheric structures of variable AGB stars (Miras)
considerably. Spectral lines of the CO dv=3 vibration-rotation bands (at
1.6mue) therefore have a very characteristic appearance in time series of
high-resolution spectra. Coupled to the light cycle they can be observed blue-
or red-shifted, for some phases even line doubling is found. This is being
explained by radial pulsations and shock fronts emerging in the atmospheres.
Based on dynamic model atmospheres synthetic CO line profiles were calculated
consistently, reproducing this scenario qualitatively.Comment: 4 pages, 2 figures, to be published in: Proc. of ESO Workshop
"High-resolution IR spectroscopy in Astronomy", ed. H.U. Kaeufl, R.
Siebenmorgen, A. Moorwood, ESO Astrophysics Symposia, Springer, p.283
added/changed references corrected typ
The structure of radiative shock waves. III. The model grid for partially ionized hydrogen gas
The grid of the models of radiative shock waves propagating through partially
ionized hydrogen gas with temperature 3000K <= T_1 <= 8000K and density
10^{-12} gm/cm^3 <= \rho_1 <= 10^{-9}gm/cm^3 is computed for shock velocities
20 km/s <= U_1 <= 90 km/s. The fraction of the total energy of the shock wave
irreversibly lost due to radiation flux ranges from 0.3 to 0.8 for 20 km/s <=
U_1 <= 70 km/s. The postshock gas is compressed mostly due to radiative cooling
in the hydrogen recombination zone and final compression ratios are within 1
<\rho_N/\rho_1 \lesssim 10^2, depending mostly on the shock velocity U_1. The
preshock gas temperature affects the shock wave structure due to the
equilibrium ionization of the unperturbed hydrogen gas, since the rates of
postshock relaxation processes are very sensitive to the number density of
hydrogen ions ahead the discontinuous jump. Both the increase of the preshock
gas temperature and the decrease of the preshock gas density lead to lower
postshock compression ratios. The width of the shock wave decreases with
increasing upstream velocity while the postshock gas is still partially ionized
and increases as soon as the hydrogen is fully ionized. All shock wave models
exhibit stronger upstream radiation flux emerging from the preshock outer
boundary in comparison with downstream radiation flux emerging in the opposite
direction from the postshock outer boundary. The difference between these
fluxes depends on the shock velocity and ranges from 1% to 16% for 20 km/s <=
U_1 <= 60 km/s. The monochromatic radiation flux transported in hydrogen lines
significantly exceeds the flux of the background continuum and all shock wave
models demonstrate the hydrogen lines in emission.Comment: 11 pages, 11 figures, LaTeX, to appear in A
- …
