449 research outputs found

    Increased PXR and Suppressed T-Cell Signaling Are Associated With Malignant Degeneration of Barrett's Esophagus

    Get PDF
    Background and Aims: Barrett's esophagus (BE) is the precursor lesion for esophageal adenocarcinoma (EAC). To detect EAC in early stage, patients with BE undergo endoscopic surveillance. Surveillance cohorts largely consist of nondysplastic BE (NDBE) patients with a low annual progression risk (&lt;0.5%). Predictive biomarkers for malignant progression of NDBE could improve efficacy of surveillance. Biomarker research has mostly focused on aberrant protein expression on BE epithelial cells. Moreover, insight in cell signaling driving malignant transformation is unknown. This study uses a data-driven approach to analyze tumor-stroma interaction in NDBE which progressed to high-grade dysplasia or EAC. Methods: In this case-control study, we performed RNA sequencing analysis on index NDBE biopsies from 6 patients who, during long-term follow-up, progressed and 7 who did not progress to high-grade dysplasia/EAC. For control samples, squamous and duodenum tissues from BE patients were analyzed. For validation, we used quantitative PCR. Results: Significant differences in BE transcriptomic profiles between progressors and nonprogressors were found by principal component and differential expression analyses. Ingenuity pathway analysis indicated that 8 cell signaling pathways were significantly upregulated in the progressors, and 14 pathways were significantly downregulated. The most interesting finding was the upregulation of the xenobiotic metabolism pregnane X receptor signaling pathway in the progressor cohort, while of the downregulated pathways in progressors, several were related to the immune system. Conclusion: These novel transcriptomic insights are fundamental for developing (chemo-)preventive therapies. These could be therapies, which protect against toxins, including biles, responsible for pregnane X receptor activation or which enhance protective immune mechanisms. The identified RNA markers are promising biomarkers for improving risk stratification in surveillance programs.</p

    Bioavailability and toxicity after oral administration of m-iodobenzylguanidine (MIBG)

    Get PDF
    meta-iodobenzylguanidine (MIBG) radiolabelled with iodine-131 is used for diagnosis and treatment of neuroadrenergic neoplasms such as phaeochromocytoma and neuroblastoma. In addition, non-radiolabelled MIBG, administered i.v., is used in several clinical studies. These include palliation of the carcinoid syndrome, in which MIBG proved to be effective in 60% of the patients. Oral MIBG administration might be convenient to maintain palliation and possibly improve the percentage of responders. We have, therefore, investigated the feasibility of oral administration of MIBG in an animal model. Orally administered MIBG demonstrated a bioavailability of 59%, with a maximal tolerated dose of 60 mg kg−1. The first and only toxicity encountered was a decrease in renal function, measured by a reduced clearance of [51Cr]EDTA and accompanied by histological tubular damage. Repeated MIBG administration of 40 mg kg−1for 5 sequential days or of 20 mg kg−1for two courses of 5 sequential days with a 2-day interval did not affect renal clearance and was not accompanied by histological abnormalities in kidney, stomach, intestines, liver, heart, lungs, thymus, salivary glands and testes. Because of a sufficient bioavailability in absence of gastrointestinal toxicity, MIBG is considered suitable for further clinical investigation of repeated oral administration in patients. 1999 Cancer Research Campaig

    The Induction of IgM and IgG Antibodies against HLA or MICA after Lung Transplantation

    Get PDF
    The production of IgG HLA antibodies after lung transplantation (LTx) is considered to be a major risk factor for the development of chronic rejection, represented by the bronchiolitis obliterans syndrome (BOS). It has recently been observed that elevated levels of IgM HLA antibodies also correlates with the development of chronic rejection in heart and kidney transplantation. This study investigates the relationship between IgM and IgG antibodies against HLA and MICA after lung transplantation. Serum was collected from 49 patients once prior to transplantation and monthly for up to 1 year after lung transplantation was analyzed by Luminex to detect IgM and IgG antibodies against HLA and MICA. The presence of either IgM or IgG HLA and/or MICA antibodies prior to or after transplantation was not related to survival, gender, primary disease, or the development of BOS. Additionally, the production of IgG alloantibodies was not preceded by an increase in levels of IgM, and IgM levels were not followed by an increase in IgG. Under current immune suppressive regimen, although the presence of IgM antibodies does not correlate with BOS after LTx, IgM high IgG low HLA class I antibody titers were observed more in patients with BOS compared to patients without BOS

    Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis

    Get PDF
    Everyone who has ever tried to radically change metabolic fluxes knows that it is often harder to determine which enzymes have to be modified than it is to actually implement these changes. In the more traditional genetic engineering approaches ’bottle-necks’ are pinpointed using qualitative, intuitive approaches, but the alleviation of suspected ’rate-limiting’ steps has not often been successful. Here the authors demonstrate that a model of pyruvate distribution in Lactococcus lactis based on enzyme kinetics in combination with metabolic control analysis clearly indicates the key control points in the flux to acetoin and diacetyl, important flavour compounds. The model presented here (available at http://jjj.biochem.sun.ac.za/wcfs.html) showed that the enzymes with the greatest effect on this flux resided outside the acetolactate synthase branch itself. Experiments confirmed the predictions of the model, i.e. knocking out lactate dehydrogenase and overexpressing NADH oxidase increased the flux through the acetolactate synthase branch from 0 to 75% of measured product formation rates

    Biopsy confirmation of metastatic sites in breast cancer patients:clinical impact and future perspectives

    Get PDF
    Determination of hormone receptor (estrogen receptor and progesterone receptor) and human epidermal growth factor receptor 2 status in the primary tumor is clinically relevant to define breast cancer subtypes, clinical outcome,and the choice of therapy. Retrospective and prospective studies suggest that there is substantial discordance in receptor status between primary and recurrent breast cancer. Despite this evidence and current recommendations,the acquisition of tissue from metastatic deposits is not routine practice. As a consequence, therapeutic decisions for treatment in the metastatic setting are based on the features of the primary tumor. Reasons for this attitude include the invasiveness of the procedure and the unreliable outcome of biopsy, in particular for biopsies of lesions at complex visceral sites. Improvements in interventional radiology techniques mean that most metastatic sites are now accessible by minimally invasive methods, including surgery. In our opinion, since biopsies are diagnostic and changes in biological features between the primary and secondary tumors can occur, the routine biopsy of metastatic disease needs to be performed. In this review, we discuss the rationale for biopsy of suspected breast cancer metastases, review issues and caveats surrounding discordance of biomarker status between primary and metastatic tumors, and provide insights for deciding when to perform biopsy of suspected metastases and which one (s) to biopsy. We also speculate on the future translational implications for biopsy of suspected metastatic lesions in the context of clinical trials and the establishment of bio-banks of biopsy material taken from metastatic sites. We believe that such bio-banks will be important for exploring mechanisms of metastasis. In the future,advances in targeted therapy will depend on the availability of metastatic tissue

    Shorter Alkyl Chains Enhance Molecular Diffusion and Electron Transfer Kinetics between Photosensitisers and Catalysts in CO2 -Reducing Photocatalytic Liposomes.

    Get PDF
    Funder: Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Id: http://dx.doi.org/10.13039/501100003246Covalent functionalisation with alkyl tails is a common method for supporting molecular catalysts and photosensitisers onto lipid bilayers, but the influence of the alkyl chain length on the photocatalytic performances of the resulting liposomes is not well understood. In this work, we first prepared a series of rhenium-based CO2 -reduction catalysts [Re(4,4'-(Cn H2n+1 )2 -bpy)(CO)3 Cl] (ReCn ; 4,4'-(Cn H2n+1 )2 -bpy=4,4'-dialkyl-2,2'-bipyridine) and ruthenium-based photosensitisers [Ru(bpy)2 (4,4'-(Cn H2n+1 )2 -bpy)](PF6 )2 (RuCn ) with different alkyl chain lengths (n=0, 9, 12, 15, 17, and 19). We then prepared a series of PEGylated DPPC liposomes containing RuCn and ReCn , hereafter noted Cn , to perform photocatalytic CO2 reduction in the presence of sodium ascorbate. The photocatalytic performance of the Cn liposomes was found to depend on the alkyl tail length, as the turnover number for CO (TON) was inversely correlated to the alkyl chain length, with a more than fivefold higher CO production (TON=14.5) for the C9 liposomes, compared to C19 (TON=2.8). Based on immobilisation efficiency quantification, diffusion kinetics, and time-resolved spectroscopy, we identified the main reason for this trend: two types of membrane-bound RuCn species can be found in the membrane, either deeply buried in the bilayer and diffusing slowly, or less buried with much faster diffusion kinetics. Our data suggest that the higher photocatalytic performance of the C9 system is due to the higher fraction of the more mobile and less buried molecular species, which leads to enhanced electron transfer kinetics between RuC9 and ReC9

    Allergen manufacturing and quality aspects for allergen immunotherapy in Europe and the United States:An analysis from the EAACI AIT Guidelines Project

    Get PDF
    Adequate quality is essential for any medicinal product to be eligible for marketing. Quality includes verification of the identity, content and purity of a medicinal product in combination with a specified production process and its control. Allergen products derived from natural sources require particular considerations to ensure adequate quality. Here, we describe key aspects of the documentation on manufacturing and quality aspects for allergen immunotherapy products in the European Union and the United States. In some key parts, requirements in these areas are harmonized while other fields are regulated separately between both regions. Essential differences are found in the use of Reference Preparations, or the requirement to apply standardized assays for potency determination. Since the types of products available are different in specific regions, regulatory guidance for such products may also be available in one specific region only, such as for allergoids in the European Union. Region-specific issues and priorities are a result of this. As allergen products derived from natural sources are inherently variable in their qualitative and quantitative composition, these products present special challenges to balance the variability and ensuring batch-to-batch consistency. Advancements in scientific knowledge on specific allergens and their role in allergic disease will consequentially find representation in future regulatory guidelines
    corecore