2 research outputs found

    Immunohistochemical Evidence from APP-Transgenic Mice for Glutaminyl Cyclase as Drug Target to Diminish pE-Abeta Formation

    Get PDF
    Oligomeric assemblies of neurotoxic amyloid beta (Abeta) peptides generated by proteolytical processing of the amyloid precursor protein (APP) play a key role in the pathogenesis of Alzheimer's disease (AD). In recent years, a substantial heterogeneity of Abeta peptides with distinct biophysical and cell biological properties has been demonstrated. Among these, a particularly neurotoxic and disease-specific Abeta variant is N-terminally truncated and modified to pyroglutamate (pE-Abeta). Cell biological and animal experimental studies imply the catalysis of this modification by the enzyme glutaminyl cyclase (QC). However, direct histopathological evidence in transgenic animals from comparative brain region and cell type-specific expression of transgenic hAPP and QC, on the one hand, and on the formation of pE-Abeta aggregates, on the other, is lacking. Here, using single light microscopic, as well as triple immunofluorescent, labeling, we report the deposition of pE-Abeta only in the brain regions of APP-transgenic Tg2576 mice with detectable human APP and endogenous QC expression, such as the hippocampus, piriform cortex, and amygdala. Brain regions showing human APP expression without the concomitant presence of QC (the anterodorsal thalamic nucleus and perifornical nucleus) do not display pE-Abeta plaque formation. However, we also identified brain regions with substantial expression of human APP and QC in the absence of pE-Abeta deposition (the Edinger-Westphal nucleus and locus coeruleus). In these brain regions, the enzymes required to generate N-truncated Abeta peptides as substrates for QC might be lacking. Our observations provide additional evidence for an involvement of QC in AD pathogenesis via QC-catalyzed pE-Abeta formation

    A novel compound heterozygous leptin receptor mutation causes more severe obesity than in Lepr(db/db) mice

    Get PDF
    The leptin receptor (Lepr) pathway is important for food intake regulation, energy expen-diture, and body weight. Mutations in leptin and the Lepr have been shown to cause early-onset severe obesity in mice and humans. In studies with C57BL/ 6NCrl mice, we found a mouse with extreme obesity. To identify a putative spontaneous new form of monogenic obesity, we performed backcross studies with this mouse followed by a quantitative trait locus (QTL) analysis and sequencing of the selected chro-mosomal QTL region. We thereby identified a novel Lepr mutation (C57BL/6N-Lepr(L536Hfs*6-1NKB)), which is located at chromosome 4, exon 11 within the CRH2-leptin-binding site. Compared with C57BL/6N mice, Lepr(L536Hfs*6) develop early onset obesity and their body weight exceeds that of Leprdb/db mice at an age of 30 weeks. Similar to Leprdb/db mice, the Lepr(L536Hfs*6) model is characterized by hyperphagia, obesity, lower energy expenditure and activity, hyperglycemia, and hyperinsulinemia compared with C57BL/6N mice. Crossing Leprdb/wt with Lepr(L536Hfs*6/wt) mice results in compound heterozygous Lepr(L536Hfs*6/db) mice, which develop even higher body weight and fat mass than both homozygous Lepr(db/db) and Lepr(L536Hfs*6) mice. Compound heterozygous Lepr deficiency affecting functionally different regions of the Lepr causes more severe obesity than the parental homozygous mutations.Peer reviewe
    corecore