304 research outputs found

    Optimized Broadcast for Deep Learning Workloads on Dense-GPU InfiniBand Clusters: MPI or NCCL?

    Full text link
    Dense Multi-GPU systems have recently gained a lot of attention in the HPC arena. Traditionally, MPI runtimes have been primarily designed for clusters with a large number of nodes. However, with the advent of MPI+CUDA applications and CUDA-Aware MPI runtimes like MVAPICH2 and OpenMPI, it has become important to address efficient communication schemes for such dense Multi-GPU nodes. This coupled with new application workloads brought forward by Deep Learning frameworks like Caffe and Microsoft CNTK pose additional design constraints due to very large message communication of GPU buffers during the training phase. In this context, special-purpose libraries like NVIDIA NCCL have been proposed for GPU-based collective communication on dense GPU systems. In this paper, we propose a pipelined chain (ring) design for the MPI_Bcast collective operation along with an enhanced collective tuning framework in MVAPICH2-GDR that enables efficient intra-/inter-node multi-GPU communication. We present an in-depth performance landscape for the proposed MPI_Bcast schemes along with a comparative analysis of NVIDIA NCCL Broadcast and NCCL-based MPI_Bcast. The proposed designs for MVAPICH2-GDR enable up to 14X and 16.6X improvement, compared to NCCL-based solutions, for intra- and inter-node broadcast latency, respectively. In addition, the proposed designs provide up to 7% improvement over NCCL-based solutions for data parallel training of the VGG network on 128 GPUs using Microsoft CNTK.Comment: 8 pages, 3 figure

    Increased neutrophil-lymphocyte ratio is a poor prognostic factor in patients with primary operable and inoperable pancreatic cancer

    Get PDF
    Background: The neutrophil-lymphocyte ratio (NLR) has been proposed as an indicator of systemic inflammatory response. Previous findings from small-scale studies revealed conflicting results about its independent prognostic significance with regard to different clinical end points in pancreatic cancer (PC) patients. Therefore, the aim of our study was the external validation of the prognostic significance of NLR in a large cohort of PC patients. Methods: Data from 371 consecutive PC patients, treated between 2004 and 2010 at a single centre, were evaluated retrospectively. The whole cohort was stratified into two groups according to the treatment modality. Group 1 comprised 261 patients with inoperable PC at diagnosis and group 2 comprised 110 patients with surgically resected PC. Cancer-specific survival (CSS) was assessed using the Kaplan–Meier method. To evaluate the independent prognostic significance of the NLR, the modified Glasgow prognostic score (mGPS) and the platelet-lymphocyte ratio univariate and multivariate Cox regression models were applied. Results: Multivariate analysis identified increased NLR as an independent prognostic factor for inoperable PC patients (hazard ratio (HR)=2.53, confidence interval (CI)=1.64–3.91, P<0.001) and surgically resected PC patients (HR=1.61, CI=1.02–2.53, P=0.039). In inoperable PC patients, the mGPS was associated with poor CSS only in univariate analysis (HR=1.44, CI=1.04–1.98). Conclusion: Risk prediction for cancer-related end points using NLR does add independent prognostic information to other well-established prognostic factors in patients with PC, regardless of the undergoing therapeutic modality. Thus, the NLR should be considered for future individual risk assessment in patients with PC

    Kilometer-scale climate models: Prospects and challenges

    Get PDF
    Currently major efforts are underway toward refining the horizontal resolution (or grid spacing) of climate models to about 1 km, using both global and regional climate models (GCMs and RCMs). Several groups have succeeded in conducting kilometer-scale multiweek GCM simulations and decadelong continental-scale RCM simulations. There is the well-founded hope that this increase in resolution represents a quantum jump in climate modeling, as it enables replacing the parameterization of moist convection by an explicit treatment. It is expected that this will improve the simulation of the water cycle and extreme events and reduce uncertainties in climate change projections. While kilometer-scale resolution is commonly employed in limited-area numerical weather prediction, enabling it on global scales for extended climate simulations requires a concerted effort. In this paper, we exploit an RCM that runs entirely on graphics processing units (GPUs) and show examples that highlight the prospects of this approach. A particular challenge addressed in this paper relates to the growth in output volumes. It is argued that the data avalanche of high-resolution simulations will make it impractical or impossible to store the data. Rather, repeating the simulation and conducting online analysis will become more efficient. A prototype of this methodology is presented. It makes use of a bit-reproducible model version that ensures reproducible simulations across hardware architectures, in conjunction with a data virtualization layer as a common interface for output analyses. An assessment of the potential of these novel approaches will be provided

    A phase 1 study of mTORC1/2 inhibitor BI 860585 as a single agent or with exemestane or paclitaxel in patients with advanced solid tumors

    Get PDF
    This phase 1 trial (NCT01938846) determined the maximum tolerated dose (MTD) of the mTOR serine/threonine kinase inhibitor, BI 860585, as monotherapy and with exemestane or paclitaxel in patients with advanced solid tumors. This 3+3 dose-escalation study assessed BI 860585 monotherapy (5–300 mg/day; Arm A), BI 860585 (40–220 mg/day; Arm B) with 25 mg/day exemestane, and BI 860585 (80–220 mg/day; Arm C) with 60–80 mg/m2 /week paclitaxel, in 28-day cycles. Primary endpoints were the number of patients with dose-limiting toxicities (DLTs) in cycle 1 and the MTD. Forty-one, 25, and 24 patients were treated (Arms A, B, and C). DLTs were observed in four (rash (n = 2), elevated alanine aminotransferase/aspartate aminotransferase, diarrhea), four (rash (n = 3), stomatitis, and increased gamma-glutamyl transferase), and two (diarrhea, increased blood creatine phosphokinase) patients in cycle 1. The BI 860585 MTD was 220 mg/day (Arm A) and 160 mg/day (Arms B and C). Nine patients achieved an objective response (Arm B: Four partial responses (PRs); Arm C: Four PRs; one complete response). The disease control rate was 20%, 28%, and 58% (Arms A, B, and C). The most frequent treatment-related adverse events (AEs) were hyperglycemia (54%) and diarrhea (39%) (Arm A); diarrhea (40%) and stomatitis (40%) (Arm B); fatigue (58%) and diarrhea (58%) (Arm C). The MTD was determined in all arms. Antitumor activity was observed with BI 860585 monotherapy and in combination with exemestane or paclitaxel

    Assessing the suitability of copper thiocyanate as a hole-transport layer in inverted CsSnI3 perovskite photovoltaics

    Get PDF
    We report the fndings of a study into the suitability of copper (I) thiocyanate (CuSCN) as a hole-transport layer in inverted photovoltaic (PV) devices based on the black gamma phase (B-γ) of CsSnl3 perovskite. Remarkably, when B-γ-CsSnI3 perovskite is deposited from a dimethylformamide solution onto a 180–190nm thick CuSCN flm supported on an indium-tin oxide (ITO) electrode, the CuSCN layer is completely displaced leaving a perovskite layer with high uniformity and coverage of the underlying ITO electrode. This fnding is confrmed by detailed analysis of the thickness and composition of the film that remains after perovskite deposition, together with photovoltaic device studies. The results of this study show that, whilst CuSCN has proved to be an excellent hole-extraction layer for high performance lead-perovskite and organic photovoltaics, it is unsuitable as a hole-transport layer in inverted B-γCsSnI3 perovskite photovoltaics processed from solution

    Neuroendocrine (Merkel cell) carcinoma of the retroperitoneum with no identifiable primary site

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroendocrine carcinoma is an aggressive neoplasm that mainly affects elderly Caucasians and typically arises in sun-exposed areas of the skin. The disease is rather rare and only a relatively few cases present with no apparent primary lesion.</p> <p>Case presentation</p> <p>We report a case of an 81-year-old Caucasian male with neuroendocrine carcinoma, which initially presented as a large retroperitoneal mass. Pathological and immunohistochemical analysis of the transabdominal CT-guided biopsy specimen revealed tissue consistent with neuroendocrine carcinoma. The patient underwent exploratory laparotomy and the mass was successfully excised along with an associated mesenteric lymph node.</p> <p>Discussion</p> <p>There are currently two possible explanations for what occurred in our patient. First, the retroperitoneal mass could be a massively enlarged lymph node where precursor cells became neoplastic. This would be consistent with a presumptive diagnosis of primary nodal disease. Alternatively, an initial skin lesion could have spontaneously regressed and the retroperitoneal mass represents a single site of metastasis. Since Merkel cell precursors have never been identified within lymph nodes, the latter theory seems more befitting. Moreover, metastasis to the retroperitoneal lymph nodes has been reported as relatively common when compared to other sites such as liver, bone, brain and skin.</p> <p>Conclusion</p> <p>Wide local excision of the primary tumor is the surgical treatment of choice for localized disease. We propose that further studies are needed to elucidate the true efficacy of chemotherapy in conventional as well as unconventional patients with neuroendocrine carcinoma.</p
    • …
    corecore