835 research outputs found
Defect Modes and Homogenization of Periodic Schr\"odinger Operators
We consider the discrete eigenvalues of the operator
H_\eps=-\Delta+V(\x)+\eps^2Q(\eps\x), where V(\x) is periodic and Q(\y)
is localized on . For \eps>0 and sufficiently small, discrete
eigenvalues may bifurcate (emerge) from spectral band edges of the periodic
Schr\"odinger operator, H_0 = -\Delta_\x+V(\x), into spectral gaps. The
nature of the bifurcation depends on the homogenized Schr\"odinger operator
L_{A,Q}=-\nabla_\y\cdot A \nabla_\y +\ Q(\y). Here, denotes the inverse
effective mass matrix, associated with the spectral band edge, which is the
site of the bifurcation.Comment: 26 pages, 3 figures, to appear SIAM J. Math. Ana
Formation of Quantum Shock Waves by Merging and Splitting Bose-Einstein Condensates
The processes of merging and splitting dilute-gas Bose-Einstein condensates
are studied in the nonadiabatic, high-density regime. Rich dynamics are found.
Depending on the experimental parameters, uniform soliton trains containing
more than ten solitons or the formation of a high-density bulge as well as
quantum (or dispersive) shock waves are observed experimentally within merged
BECs. Our numerical simulations indicate the formation of many vortex rings. In
the case of splitting a BEC, the transition from sound-wave formation to
dispersive shock-wave formation is studied by use of increasingly stronger
splitting barriers. These experiments realize prototypical dispersive shock
situations.Comment: 10 pages, 8 figure
Matching Dynamics with Constraints
We study uncoordinated matching markets with additional local constraints
that capture, e.g., restricted information, visibility, or externalities in
markets. Each agent is a node in a fixed matching network and strives to be
matched to another agent. Each agent has a complete preference list over all
other agents it can be matched with. However, depending on the constraints and
the current state of the game, not all possible partners are available for
matching at all times. For correlated preferences, we propose and study a
general class of hedonic coalition formation games that we call coalition
formation games with constraints. This class includes and extends many recently
studied variants of stable matching, such as locally stable matching, socially
stable matching, or friendship matching. Perhaps surprisingly, we show that all
these variants are encompassed in a class of "consistent" instances that always
allow a polynomial improvement sequence to a stable state. In addition, we show
that for consistent instances there always exists a polynomial sequence to
every reachable state. Our characterization is tight in the sense that we
provide exponential lower bounds when each of the requirements for consistency
is violated. We also analyze matching with uncorrelated preferences, where we
obtain a larger variety of results. While socially stable matching always
allows a polynomial sequence to a stable state, for other classes different
additional assumptions are sufficient to guarantee the same results. For the
problem of reaching a given stable state, we show NP-hardness in almost all
considered classes of matching games.Comment: Conference Version in WINE 201
Socially stable matchings in the hospitals / residents problem
In the Hospitals/Residents (HR) problem, agents are partitioned into hospitals and residents. Each agent wishes to be matched to an agent in the other set and has a strict preference over these potential matches. A matching is stable if there are no blocking pairs, i.e., no pair of agents that prefer each other to their assigned matches. Such a situation is undesirable as it could lead to a deviation in which the blocking pair form a private arrangement outside the matching. This however assumes that the blocking pair have social ties or communication channels to facilitate the deviation. Relaxing the stability definition to take account of the potential lack of social ties between agents can yield larger stable matchings.
In this paper, we define the Hospitals/Residents problem under Social Stability (HRSS) which takes into account social ties between agents by introducing a social network graph to the HR problem. Edges in the social network graph correspond to resident-hospital pairs in the HR instance that know one another. Pairs that do not have corresponding edges in the social network graph can belong to a matching M but they can never block M. Relative to a relaxed stability definition for HRSS, called social stability, we show that socially stable matchings can have different sizes and the problem of finding a maximum socially stable matching is NP-hard, though approximable within 3/2. Furthermore we give polynomial time algorithms for three special cases of the problem
Deterministic drift instability and stochastic thermal perturbations of magnetic dissipative droplet solitons
The magnetic dissipative droplet is a strongly nonlinear wave structure that can be stabilized in a thin film ferromagnet exhibiting perpendicular magnetic anisotropy by use of spin transfer torque. These structures have been observed experimentally at room temperature, showcasing their robustness against noise. Here, we quantify the effects of thermal noise by deriving stochastic equations of motion for a droplet based on soliton perturbation theory. First, it is found that deterministic droplets are linearly unstable at large bias currents, subject to a drift instability. When the droplet is linearly stable, our framework allows us to analytically compute the droplet's generation linewidth and center variance. Additionally, we study the influence of nonlocal and Oersted fields with micromagnetic simulations, providing insight into their effect on the generation linewidth. These results motivate detailed experiments on the current and temperature-dependent linewidth as well as drift instability statistics of droplets, which are important figures-of-merit in the prospect of droplet-based applications
On Linear Congestion Games with Altruistic Social Context
We study the issues of existence and inefficiency of pure Nash equilibria in
linear congestion games with altruistic social context, in the spirit of the
model recently proposed by de Keijzer {\em et al.} \cite{DSAB13}. In such a
framework, given a real matrix specifying a particular
social context, each player aims at optimizing a linear combination of the
payoffs of all the players in the game, where, for each player , the
multiplicative coefficient is given by the value . We give a broad
characterization of the social contexts for which pure Nash equilibria are
always guaranteed to exist and provide tight or almost tight bounds on their
prices of anarchy and stability. In some of the considered cases, our
achievements either improve or extend results previously known in the
literature
Hydrodynamic optical soliton tunneling
A conceptually new notion of hydrodynamic optical soliton tunneling is introduced in which
a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrodinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave
(Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting
with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Under certain conditions, soliton interaction with hydrodynamic barriers gives rise to new effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers
Routing Games over Time with FIFO policy
We study atomic routing games where every agent travels both along its
decided edges and through time. The agents arriving on an edge are first lined
up in a \emph{first-in-first-out} queue and may wait: an edge is associated
with a capacity, which defines how many agents-per-time-step can pop from the
queue's head and enter the edge, to transit for a fixed delay. We show that the
best-response optimization problem is not approximable, and that deciding the
existence of a Nash equilibrium is complete for the second level of the
polynomial hierarchy. Then, we drop the rationality assumption, introduce a
behavioral concept based on GPS navigation, and study its worst-case efficiency
ratio to coordination.Comment: Submission to WINE-2017 Deadline was August 2nd AoE, 201
Geometric Network Creation Games
Network Creation Games are a well-known approach for explaining and analyzing
the structure, quality and dynamics of real-world networks like the Internet
and other infrastructure networks which evolved via the interaction of selfish
agents without a central authority. In these games selfish agents which
correspond to nodes in a network strategically buy incident edges to improve
their centrality. However, past research on these games has only considered the
creation of networks with unit-weight edges. In practice, e.g. when
constructing a fiber-optic network, the choice of which nodes to connect and
also the induced price for a link crucially depends on the distance between the
involved nodes and such settings can be modeled via edge-weighted graphs. We
incorporate arbitrary edge weights by generalizing the well-known model by
Fabrikant et al.[PODC'03] to edge-weighted host graphs and focus on the
geometric setting where the weights are induced by the distances in some metric
space. In stark contrast to the state-of-the-art for the unit-weight version,
where the Price of Anarchy is conjectured to be constant and where resolving
this is a major open problem, we prove a tight non-constant bound on the Price
of Anarchy for the metric version and a slightly weaker upper bound for the
non-metric case. Moreover, we analyze the existence of equilibria, the
computational hardness and the game dynamics for several natural metrics. The
model we propose can be seen as the game-theoretic analogue of a variant of the
classical Network Design Problem. Thus, low-cost equilibria of our game
correspond to decentralized and stable approximations of the optimum network
design.Comment: Accepted at 31st ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA '19). 33 pages, 11 figure
- …