We consider the discrete eigenvalues of the operator
H_\eps=-\Delta+V(\x)+\eps^2Q(\eps\x), where V(\x) is periodic and Q(\y)
is localized on Rd,d≥1. For \eps>0 and sufficiently small, discrete
eigenvalues may bifurcate (emerge) from spectral band edges of the periodic
Schr\"odinger operator, H_0 = -\Delta_\x+V(\x), into spectral gaps. The
nature of the bifurcation depends on the homogenized Schr\"odinger operator
L_{A,Q}=-\nabla_\y\cdot A \nabla_\y +\ Q(\y). Here, A denotes the inverse
effective mass matrix, associated with the spectral band edge, which is the
site of the bifurcation.Comment: 26 pages, 3 figures, to appear SIAM J. Math. Ana