80 research outputs found

    Methanol on Enceladus

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95284/1/grl26203.pd

    Methanol on Enceladus

    Get PDF
    Near infrared spectra of the surface of Enceladus returned by Cassini show the presence of an absorption feature at 3.53 μm, ascribed by Brown et al. (2006) to “short chain organics,” and by Newman et al. (2007) to hydrogen peroxide. We assign this feature tentatively to methanol. Variations in the peak position of the feature suggest that methanol in the “tiger stripes” region may be segregated from the water ice, and not homogeneously distributed in the ice matrix. The photolytic destruction of methanol implies that methane or methanol itself must be continually deposited on the surface. On Enceladus, methanol may be generated photochemically from a mixed methane/water ice, or deposited from the plume itself. The variation in the concentration of methanol over the surface could be used to distinguish between these two processes

    Novel Cβ–Cγ Bond Cleavages of Tryptophan-Containing Peptide Radical Cations

    Get PDF
    In this study, we observed unprecedented cleavages of the Cβ–Cγ bonds of tryptophan residue side chains in a series of hydrogen-deficient tryptophan-containing peptide radical cations (M•+) during low-energy collision-induced dissociation (CID). We used CID experiments and theoretical density functional theory (DFT) calculations to study the mechanism of this bond cleavage, which forms [M – 116]+ ions. The formation of an α-carbon radical intermediate at the tryptophan residue for the subsequent Cβ–Cγ bond cleavage is analogous to that occurring at leucine residues, producing the same product ions; this hypothesis was supported by the identical product ion spectra of [LGGGH – 43]+ and [WGGGH – 116]+, obtained from the CID of [LGGGH]•+ and [WGGGH]•+, respectively. Elimination of the neutral 116-Da radical requires inevitable dehydrogenation of the indole nitrogen atom, leaving the radical centered formally on the indole nitrogen atom ([Ind]•-2), in agreement with the CID data for [WGGGH]•+ and [W1-CH3GGGH]•+; replacing the tryptophan residue with a 1-methyltryptophan residue results in a change of the base peak from that arising from a neutral radical loss (116 Da) to that arising from a molecule loss (131 Da), both originating from Cβ–Cγ bond cleavage. Hydrogen atom transfer or proton transfer to the γ-carbon atom of the tryptophan residue weakens the Cβ–Cγ bond and, therefore, decreases the dissociation energy barrier dramatically
    • …
    corecore