907 research outputs found

    Metabolic fate of fructose ingested with and without glucose in a mixed meal.

    Get PDF
    Ingestion of pure fructose stimulates de novo lipogenesis and gluconeogenesis. This may however not be relevant to typical nutritional situations, where fructose is invariably ingested with glucose. We therefore assessed the metabolic fate of fructose incorporated in a mixed meal without or with glucose in eight healthy volunteers. Each participant was studied over six hours after the ingestion of liquid meals containing either 13C-labelled fructose, unlabeled glucose, lipids and protein (Fr + G) or 13C-labelled fructose, lipids and protein, but without glucose (Fr), or protein and lipids alone (ProLip). After Fr + G, plasma 13C-glucose production accounted for 19.0% ± 1.5% and 13CO2 production for 32.2% ± 1.3% of 13C-fructose carbons. After Fr, 13C-glucose production (26.5% ± 1.4%) and 13CO2 production (36.6% ± 1.9%) were higher (p < 0.05) than with Fr + G. 13C-lactate concentration and very low density lipoprotein VLDL 13C-palmitate concentrations increased to the same extent with Fr + G and Fr, while chylomicron 13C-palmitate tended to increase more with Fr + G. These data indicate that gluconeogenesis, lactic acid production and both intestinal and hepatic de novo lipogenesis contributed to the disposal of fructose carbons ingested together with a mixed meal. Co-ingestion of glucose decreased fructose oxidation and gluconeogenesis and tended to increase 13C-pamitate concentration in gut-derived chylomicrons, but not in hepatic-borne VLDL-triacylglycerol (TG). This trial was approved by clinicaltrial. gov. Identifier is NCT01792089

    Pancreas exocrine replacement therapy is associated with increased survival following pancreatoduodenectomy for periampullary malignancy

    Get PDF
    Background: Although many patients undergoing pancreatoduodenectomy (PD) for cancer have pancreatic exocrine insufficiency, pancreatic enzyme replacement therapy (PERT) is not routinely used, and effects upon post-operative survival are unclear.Methods: This review of patients undergoing PD for periampullary malignancy sought to test for an association between PERT and overall survival, with post-hoc subgroup analysis performed after stratifying patients by the year of surgery, pancreatic duct width and tumour type.Results: Some 202/469 (43.1%) patients received PERT. After accounting for pathological variables and chemotherapy, PERT use was found to be independently associated with improved survival on multivariable analysis [HR 0.72 (95% CI: 0.52-0.99), p = 0.044] and on propensity matched analysis (p = 0.009). The effect of PERT upon improved survival was predominantly observed amongst patients with a dilated pancreatic duct (>= 3 mm).Discussion: PERT use was independently associated with improved survival following PD for cancer. The validity of this observation is supported by an effect largely confined to those patients with a dilated pancreatic duct. The nutritional status of patients undergoing PD for cancer needs further investigation and the effects of PERT require verification in further clinical studies

    2001-GT-XXXX Boundary Layer Development in the BR710 and BR715 LP Turbines - The Implementation of High Lift and Ultra High Lift Concepts

    Get PDF
    ABSTRACT This paper describes a detailed study into the unsteady boundary layer behaviour in two high lift and one ultra high lift Rolls-Royce Deutschland LP turbines. The objectives of the paper are to show that high lift and ultra high-lift concepts have been successfully incorporated into the design of these new LP turbine profiles. Measurements from surface mounted hot film sensors were made in full size, cold flow test rigs at the altitude test facility at Stuttgart University. The LP turbine blade profiles are thought to be state of the art in terms of their lift and design philosophy. The two high lift profiles represent slightly different styles of velocity distribution. The first high-lift profile comes from a two stage LP turbine (the BR710 cold-flow, high-lift demonstrator rig). The second high-lift profile tested is from a three-stage machine (the BR715 LPT rig). The ultra-high lift profile measurements come from a redesign of the BR715 LP turbine: this is designated the BR715UHL LP turbine. This ultra high-lift profile represents a 12% reduction in blade numbers compared to the original BR715 turbine. The results from NGV2 on all of the turbines show "classical" unsteady boundary layer behaviour. The measurements from NGV3 (of both the BR715 and BR715UHL turbines) are more complicated, but can still be broken down into classical regions of wake-induced transition, natural transition and calming. The wakes from both upstream rotors and NGVs interact in a complicated manner, affecting the suction surface boundary layer of NGV3. This has important implications for the prediction of the flows on blade rows in multistage environments

    Risk factors for failure to rescue after hepatectomy in a high-volume UK tertiary referral center

    Get PDF
    BACKGROUND: Mortality after severe complications after hepatectomy (failure to rescue) is strongly linked to center volume. The aim of this study was to evaluate the risk factors for failure to rescue after hepatectomy in a high-volume center.METHODS: Retrospective study of 1,826 consecutive patients who underwent hepatectomy from 2011 to 2018. The primary outcome was a 90-day failure to rescue, defined as death within 90 days posthepatectomy after a severe (Clavien-Dindo grade 3+) complication. Risk factors for 90-day failure to rescue were evaluated using a multivariable binary logistic regression model.RESULTS: The cohort had a median age of 65.3 years, and 56.6% of patients were male. The commonest indication for hepatectomy was colorectal metastasis (58.9%), and 46.9% of patients underwent major or extra-major hepatectomy. Severe complications developed in 209 patients (11.4%), for whom the 30- and 90-day failure to rescue rates were 17.0% and 35.4%, respectively. On multivariable analysis, increasing age (P = .006) and modified Frailty Index (P = .044), complication type (medical or combined medical/surgical versus surgical; P &lt; .001), and body mass index (P = .018) were found to be significant independent predictors of 90-day failure to rescue.CONCLUSION: Older and frail patients who experience medical complications are particularly at risk of failure to rescue after hepatectomy. These results may inform preoperative counseling and may help to identify candidates for prehabilitation. Further study is needed to assess whether failure to rescue rates could be reduced by perioperative interventions.</p

    Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP)

    Get PDF
    Global wetlands are believed to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. The Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) investigated our present ability to simulate large-scale wetland characteristics and corresponding CH4 emissions. To ensure inter-comparability, we used a common experimental protocol driving all models with the same climate and carbon dioxide (CO2) forcing datasets. The WETCHIMP experiments were conducted for model equilibrium states as well as transient simulations covering the last century. Sensitivity experiments investigated model response to changes in selected forcing inputs (precipitation, temperature, and atmospheric CO2 concentration). Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The models also varied in methods to calculate wetland size and location, with some models simulating wetland area prognostically, while other models relied on remotely sensed inundation datasets, or an approach intermediate between the two. Four major conclusions emerged from the project. First, the suite of models demonstrate extensive disagreement in their simulations of wetland areal extent and CH4 emissions, in both space and time. Simple metrics of wetland area, such as the latitudinal gradient, show large variability, principally between models that use inundation dataset information and those that independently determine wetland area. Agreement between the models improves for zonally summed CH4 emissions, but large variation between the models remains. For annual global CH4 emissions, the models vary by ±40% of the all-model mean (190 Tg CH4 yr−1). Second, all models show a strong positive response to increased atmospheric CO2 concentrations (857 ppm) in both CH4 emissions and wetland area. In response to increasing global temperatures (+3.4 °C globally spatially uniform), on average, the models decreased wetland area and CH4 fluxes, primarily in the tropics, but the magnitude and sign of the response varied greatly. Models were least sensitive to increased global precipitation (+3.9 % globally spatially uniform) with a consistent small positive response in CH4 fluxes and wetland area. Results from the 20th century transient simulation show that interactions between climate forcings could have strong non-linear effects. Third, we presently do not have sufficient wetland methane observation datasets adequate to evaluate model fluxes at a spatial scale comparable to model grid cells (commonly 0.5°). This limitation severely restricts our ability to model global wetland CH4 emissions with confidence. Our simulated wetland extents are also difficult to evaluate due to extensive disagreements between wetland mapping and remotely sensed inundation datasets. Fourth, the large range in predicted CH4 emission rates leads to the conclusion that there is both substantial parameter and structural uncertainty in large-scale CH4 emission models, even after uncertainties in wetland areas are accounted for
    corecore