112 research outputs found

    First evidence of multiple populations along the AGB from Str\"omgren photometry

    Full text link
    Spectroscopic studies have demonstrated that nearly all Galactic globular clusters (GCs) harbour multiple stellar populations with different chemical compositions. Moreover, colour-magnitude diagrams based exclusively on Str\"omgrem photometry have allowed us to identify and characterise multiple populations along the RGB of a large number of clusters. In this paper we show for the first time that Str\"omgren photometry is also very effcient at identifying multiple populations along the AGB, and demonstrate that the AGB of M3, M92, NGC362, NGC1851, and NGC6752 are not consistent with a single stellar population. We also provide a catalogue of RGB and AGB stars photometrically identified in these clusters for further spectroscopic follow-up studies.We combined photometry and elemental abundances from the literature for RGB and AGB stars in NGC6752 where the presence of multiple populations along the AGB has been widely debated. We find that, while the MS, SGB, and RGB host three stellar populations with different helium and light element abundances, only two populations of AGB stars are present in the cluster. These results are consistent with standard evolutionary theory.Comment: 9 pages, 3 figures, 1 table in the main article, 3 tables in the appendix of which 2 tables containing coordinates and photometry of photometrically identified RGB and AGB star

    An automated search for transiting exocomets

    Get PDF
    This paper discusses an algorithm for detecting single transits in photometric time-series data. Specifically, we aim to identify asymmetric transits with ingress that is more rapid than egress, as expected for cometary bodies with a significant tail. The algorithm is automated, so can be applied to large samples and only a relatively small number of events need to be manually vetted. We applied this algorithm to all long cadence light curves from the Kepler mission, finding 16 candidate transits with significant asymmetry, 11 of which were found to be artefacts or symmetric transits after manual inspection. Of the 5 remaining events, four are the 0.1% depth events previously identified for KIC 3542116 and 11084727. We identify HD 182952 (KIC 8027456) as a third system showing a potential comet transit. All three stars showing these events have H-R diagram locations consistent with ∼\sim100Myr-old open cluster stars, as might be expected given that cometary source regions deplete with age, and giving credence to the comet hypothesis. If these events are part of the same population of events as seen for KIC 8462852, the small increase in detections at 0.1% depth compared to 10% depth suggests that future work should consider whether the distribution is naturally flat, or if comets with symmetric transits in this depth range remain undiscovered. Future searches relying on asymmetry should be more successful if they focus on larger samples and young stars, rather than digging further into the noise

    Assessing telluric correction methods for Na detections with high-resolution exoplanet transmission spectroscopy.

    Get PDF
    Using high-resolution ground-based transmission spectroscopy to probe exoplanetary atmospheres is difficult due to the inherent telluric contamination from absorption in Earth's atmosphere. A variety of methods have previously been used to remove telluric features in the optical regime and calculate the planetary transmission spectrum. In this paper we present and compare two such methods, specifically focusing on Na detections using high-resolution optical transmission spectra: (a) calculating the telluric absorption empirically based on the airmass, and (b) using a model of the Earth's transmission spectrum. We test these methods on the transmission spectrum of the hot Jupiter HD 189733 b using archival data obtained with the HARPS spectrograph during three transits. Using models for Centre-to-Limb Variation and the Rossiter-McLaughlin effect, spurious signals which are imprinted within the transmission spectrum are reduced. We find that correcting tellurics with an atmospheric model of the Earth is more robust and produces consistent results when applied to data from different nights with changing atmospheric conditions. We confirm the detection of sodium in the atmosphere of HD 189733 b, with doublet line contrasts of -0.64 ±\pm 0.07 % (D2) and -0.53 ±\pm 0.07 % (D1). The average line contrast corresponds to an effective photosphere in the Na line located around 1.13 RpR_p. We also confirm an overall blueshift of the line centroids corresponding to net atmospheric eastward winds with a speed of 1.8 ±\pm 1.2 km/s. Our study highlights the importance of accurate telluric removal for consistent and reliable characterisation of exoplanetary atmospheres using high-resolution transmission spectroscopy

    The fast transient sky with Gaia

    Get PDF
    The ESA Gaia satellite scans the whole sky with a temporal sampling ranging from seconds and hours to months. Each time a source passes within the Gaia field of view, it moves over 10 CCDs in 45 s and a lightcurve with 4.5 s sampling (the crossing time per CCD) is registered. Given that the 4.5 s sampling represents a virtually unexplored parameter space in optical time domain astronomy, this data set potentially provides a unique opportunity to open up the fast transient sky. We present a method to start mining the wealth of information in the per CCD Gaia data. We perform extensive data filtering to eliminate known on-board and data processing artefacts, and present a statistical method to identify sources that show transient brightness variations on ~2 hours timescales. We illustrate that by using the Gaia photometric CCD measurements, we can detect transient brightness variations down to an amplitude of 0.3 mag on timescales ranging from 15 seconds to several hours. We search an area of ~23.5 square degrees on the sky, and find four strong candidate fast transients. Two candidates are tentatively classified as flares on M-dwarf stars, while one is probably a flare on a giant star and one potentially a flare on a solar type star. These classifications are based on archival data and the timescales involved. We argue that the method presented here can be added to the existing Gaia Science Alerts infrastructure for the near real-time public dissemination of fast transient events.Comment: 10 pages, 5 figures and 5 tables; MNRAS in pres

    NGTS-4b: A sub-Neptune transiting in the desert

    Get PDF
    We report the discovery of NGTS-4b, a sub-Neptune-sized planet transiting a 13th magnitude K-dwarf in a 1.34 d orbit. NGTS-4b has a mass M = 20.6 ± 3.0 M⊕ and radius R = 3.18 ± 0.26 R⊕, which places it well within the so-called ‘Neptunian Desert’. The mean density of the planet (3.45 ± 0.95 g cm−3) is consistent with a composition of 100  per cent H2O or a rocky core with a volatile envelope. NGTS-4b is likely to suffer significant mass loss due to relatively strong EUV/X-ray irradiation. Its survival in the Neptunian desert may be due to an unusually high-core mass, or it may have avoided the most intense X-ray irradiation by migrating after the initial activity of its host star had subsided. With a transit depth of 0.13 ± 0.02 per cent, NGTS-4b represents the shallowest transiting system ever discovered from the ground, and is the smallest planet discovered in a wide-field ground-based photometric survey

    The Monitor project: the search for transits in the open cluster NGC 2362

    Full text link
    We present the results of a systematic search for transiting planets in a ~5 Myr open cluster, NGC 2362. We observed ~1200 candidate cluster members, of which ~475 are believed to be genuine cluster members, for a total of ~100 hours. We identify 15 light curves with reductions in flux that pass all our detection criteria, and 6 of the candidates have occultation depths compatible with a planetary companion. The variability in these six light curves would require very large planets to reproduce the observed transit depth. If we assume that none of our candidates are in fact planets then we can place upper limits on the fraction of stars with hot Jupiters (HJs) in NGC 2362. We obtain 99% confidence upper limits of 0.22 and 0.70 on the fraction of stars with HJs (f_p) for 1-3 and 3-10 day orbits, respectively, assuming all HJs have a planetary radius of 1.5R_Jup. These upper limits represent observational constraints on the number of stars with HJs at an age <~10 Myr, when the vast majority of stars are thought to have lost their protoplanetary discs. Finally, we extend our results to the entire Monitor Project, a survey searching young, open clusters for planetary transits, and find that the survey as currently designed should be capable of placing upper limits on f_p near the observed values of f_p in the solar neighbourhood.Comment: 17 pages, 11 figures, accepted to MNRA
    • …
    corecore