53 research outputs found

    Stability and chaos in Kustaanheimo-Stiefel space induced by the Hopf fibration

    No full text
    The need for the extra dimension in Kustaanheimo–Stiefel (KS) regularization is explained by the topology of the Hopf fibration, which defines the geometry and structure of KS space. A trajectory in Cartesian space is represented by a four-dimensional manifold called the fundamental manifold. Based on geometric and topological aspects classical concepts of stability are translated to KS language. The separation between manifolds of solutions generalizes the concept of Lyapunov stability. The dimension-raising nature of the fibration transforms fixed points, limit cycles, attractive sets, and Poincaré sections to higher dimensional subspaces. From these concepts chaotic systems are studied. In strongly perturbed problems, the numerical error can break the topological structure of KS space: points in a fibre are no longer transformed to the same point in Cartesian space. An observer in three dimensions will see orbits departing from the same initial conditions but diverging in time. This apparent randomness of the integration can only be understood in four dimensions. The concept of topological stability results in a simple method for estimating the time-scale in which numerical simulations can be trusted. Ideally, all trajectories departing from the same fibre should be KS transformed to a unique trajectory in three-dimensional space, because the fundamental manifold that they constitute is unique. By monitoring how trajectories departing from one fibre separate from the fundamental manifold a critical time, equivalent to the Lyapunov time, is estimated. These concepts are tested on N-body examples: the Pythagorean problem, and an example of field stars interacting with a binar

    High Fidelity Models for Near-Earth Object Dynamics

    Full text link
    Motivado por los últimos hallazgos realizados gracias a los recientes avances tecnológicos y misiones espaciales, el estudio de los asteroides ha despertado el interés de la comunidad científica. Tal es así que las misiones a asteroides han proliferado en los últimos años (Hayabusa, Dawn, OSIRIX-REx, ARM, AIMS-DART, ...) incentivadas por su enorme interés científico. Los asteroides son constituyentes fundamentales en la evolución del Sistema Solar, son además grandes concentraciones de valiosos recursos naturales, y también pueden considerarse como objectivos estratégicos para la futura exploración espacial. Desde hace tiempo se viene especulando con la posibilidad de capturar objetos próximos a la Tierra (NEOs en su acrónimo anglosajón) y acercarlos a nuestro planeta, permitiendo así un acceso asequible a los mismos para estudiarlos in-situ, explotar sus recursos u otras finalidades. Por otro lado, las asteroides se consideran con frecuencia como posibles peligros de magnitud planetaria, ya que impactos de estos objetos con la Tierra suceden constantemente, y un asteroide suficientemente grande podría desencadenar eventos catastróficos. Pese a la gravedad de tales acontecimientos, lo cierto es que son ciertamente difíciles de predecir. De hecho, los ricos aspectos dinámicos de los asteroides, su modelado complejo y las incertidumbres observaciones hacen que predecir su posición futura con la precisión necesaria sea todo un reto. Este hecho se hace más relevante cuando los asteroides sufren encuentros próximos con la Tierra, y más aún cuando estos son recurrentes. En tales situaciones en las cuales fuera necesario tomar medidas para mitigar este tipo de riesgos, saber estimar con precisión sus trayectorias y probabilidades de colisión es de una importancia vital. Por ello, se necesitan herramientas avanzadas para modelar su dinámica y predecir sus órbitas con precisión, y son también necesarios nuevos conceptos tecnológicos para manipular sus órbitas llegado el caso. El objetivo de esta Tesis es proporcionar nuevos métodos, técnicas y soluciones para abordar estos retos. Las contribuciones de esta Tesis se engloban en dos áreas: una dedicada a la propagación numérica de asteroides, y otra a conceptos de deflexión y captura de asteroides. Por lo tanto, la primera parte de este documento presenta novedosos avances de apliación a la propagación dinámica de alta precisión de NEOs empleando métodos de regularización y perturbaciones, con especial énfasis en el método DROMO, mientras que la segunda parte expone ideas innovadoras para la captura de asteroides y comenta el uso del “ion beam shepherd” (IBS) como tecnología para deflectarlos. Abstract Driven by the latest discoveries enabled by recent technological advances and space missions, the study of asteroids has awakened the interest of the scientific community. In fact, asteroid missions have become very popular in the recent years (Hayabusa, Dawn, OSIRIX-REx, ARM, AIMS-DART, ...) motivated by their outstanding scientific interest. Asteroids are fundamental constituents in the evolution of the Solar System, can be seen as vast concentrations of valuable natural resources, and are also considered as strategic targets for the future of space exploration. For long it has been hypothesized with the possibility of capturing small near-Earth asteroids and delivering them to the vicinity of the Earth in order to allow an affordable access to them for in-situ science, resource utilization and other purposes. On the other side of the balance, asteroids are often seen as potential planetary hazards, since impacts with the Earth happen all the time, and eventually an asteroid large enough could trigger catastrophic events. In spite of the severity of such occurrences, they are also utterly hard to predict. In fact, the rich dynamical aspects of asteroids, their complex modeling and observational uncertainties make exceptionally challenging to predict their future position accurately enough. This becomes particularly relevant when asteroids exhibit close encounters with the Earth, and more so when these happen recurrently. In such situations, where mitigation measures may need to be taken, it is of paramount importance to be able to accurately estimate their trajectories and collision probabilities. As a consequence, advanced tools are needed to model their dynamics and accurately predict their orbits, as well as new technological concepts to manipulate their orbits if necessary. The goal of this Thesis is to provide new methods, techniques and solutions to address these challenges. The contributions of this Thesis fall into two areas: one devoted to the numerical propagation of asteroids, and another to asteroid deflection and capture concepts. Hence, the first part of the dissertation presents novel advances applicable to the high accuracy dynamical propagation of near-Earth asteroids using regularization and perturbations techniques, with a special emphasis in the DROMO method, whereas the second part exposes pioneering ideas for asteroid retrieval missions and discusses the use of an “ion beam shepherd” (IBS) for asteroid deflection purposes

    Frozen orbits for scientific missions using rotating tethers

    Get PDF
    We derive a semi-analytic formulation that permits to study the long-term dynamics of fast-rotating inert tethers around planetary satellites. Since space tethers are extensive bodies they generate non-keplerian gravitational forces which depend solely on their mass geometry and attitude, that can be exploited for controlling science orbits. We conclude that rotating tethers modify the geometry of frozen orbits, allowing for lower eccentricity frozen orbits for a wide range of orbital inclination, where the length of the tether becomes a new parameter that the mission analyst may use to shape frozen orbits to tighter operational constraints

    PENGARUH AUDIT INTERNAL DAN KUALITAS SISTEM INFORMASI AKUNTANSI PENJUALAN TERHADAP EFEKTIVITAS PENJUALAN (Studi Pada 3 Perusahaan BUMN Sektor Jasa di Kota Bandung)

    Get PDF
    Abstrak Penelitian ini bertujuan untuk mengetahui pengaruh audit internal, dan kualitas sistem informasi akuntansi penjualan terhadap efektivitas penjualan secara parsial maupun secara simultan. Penelitian menggunakan pendekatan kuantitatif. Teknik pengumpulan data yang digunakan adalah dengan menggunakan instrument kuesioner. Penelitian ini menggunakan data primer. Subjek penelitian ini adalah tiga (3) Persusahaan BUMN Sektor Jasa di Kota Bandung dan objek penelitiannya yaitu audit internal, kualitas sistem informasi akuntansi penjualan, dan efektivitas penjualan. Teknik pengambilan sampel yang digunakan adalah simple random sampling dengan jumlah responden sebanyak 57 orang. Analisis statistik yang digunakan dalam penelitian ini adalah uji asumsi klasik, analisis regresi, korelasi, analisis koefisien determinasi dan uji hipotesis yang diolah dengan menggunakan program SPSS 23,0 for windows. Hasil penelitian menunjukkan bahwa (1) secara parsial pengaruh audit internal sebesar 25,90% dan kualitas sistem informasi akuntansi sebesar 33% terhadap efektivitas. (2) secara simultan audit internal dan kualitas sistem informasi akuntansi penjualan terhadap efektivitas penjualan sebesar 58,9%, sedangkan sisanya sebesar 41,1% merupakan pengaruh faktor lain di luar variabel independen yang diteliti. Seperti Efektivitas Pengendalian Internal, Pengetahuan Akuntansi, Operasi Penjualan, Sistem Pengendalian Intern Penjualan, Efektivitas Pengendalian Piutang. Kata Kunci: Audit Internal, Kualitas Sistem Informasi Akuntansi Penjualan, Efektivita

    Trajectory design for asteroid retrieval missions: a short review

    Get PDF
    In simple terms, an asteroid retrieval mission envisages a spacecraft that rendezvous with an asteroid, lassos it and hauls it back to the Earth's neighborhood. Speculative engineering studies for such an ambitious mission concept appeared in scientific literature at the beginning of the space age. This early work employed a two-body dynamical framework to estimate the Δv costs entailed with hauling an entire asteroid back to Earth. The concept however has experienced a revival in recent years, stimulated by the inclusion of a plan to retrieve a small asteroid in NASA's 2014 budget. This later batch of work is well aware of technological limitations, and thus envisages a much more level-headed space system, capable of delivering only the most minimal change of linear momentum to the asteroid. As a consequence, the design of retrieval trajectories has evolved into strategies to take full advantage of low energy transfer opportunities, which must carefully account for the simultaneous gravitational interactions of the Sun, Earth, and Moon. The paper reviews the published literature up to date, and provides a short literature survey on the historical evolution of the concept. This literature survey is particularly focused on the design of asteroid retrieval trajectories, and thus the paper provides a comprehensive account of: the endgame strategies considered so far, the different dynamical models and the trajectory design methodologies

    Earth Delivery of a Small NEO with an Ion Beam Shepherd

    Get PDF
    The possibility of capturing a small Near Earth Asteroid (NEA) and deliver it to the vicinity of the Earth has been recently explored by different authors. The key advantage would be to allow a cheap and quick access to the NEA for science, resource utilization and other purposes. Among the different challenges related to this operation stands the difficulty of robotically capturing the object, whose composition and dynamical state could be problematic. In order to simplify the capture operation we propose the use of a collimated ion beam ejected from a hovering spacecraft in order to maneuver the object without direct physical contact. The feasibility of a possible asteroid retrieval mission is evaluated

    Modifying the atlas of low lunar orbits using inert tethers

    Get PDF
    For long enough tethers, the coupling of the attitude and orbital dynamics may show non-negligible effects in the orbital motion of a tethered satellite about a central body. In the case of fast rotating tethers the attitude remains constant, on average, up to second order effects. Besides, for a tether rotating in a plane parallel to the equatorial plane of the central body, the attitude?orbit coupling effect is formally equal to the perturbation of the Keplerian motion produced by the oblateness of the central body and, therefore, may have a stabilizing effect in the orbital dynamics. In the case of a tethered satellite in a low lunar orbit, it is demonstrated that feasible tether lengths can help in modifying the actual map of lunar frozen orbit

    The SIROCO Asteroid Deflection Demonstrator

    Get PDF
    There is evidence of past Near-Earth-Objects (NEOs) impacts on Earth and several studies indicating that even relatively small objects are capable of causing large local damage, either directly or in combination with other phenomena, e.g. tsunamis. This paper describes a space mission concept to demonstrate some of the key technologies to rendezvous with an asteroid and accurately measure its trajectory during and after a deflection maneuver. The mission, called SIROCO, makes use of the recently proposed ion beam shepherd (IBS) concept where a stream of accelerated plasma ions is directed against the surface of a small NEO resulting in a net transmitted deflection force. We show that by carefully selecting the target NEO a measurable deflection can be obtained in a few weeks of continuous thrust with a small spacecraft and state of the art electric propulsion hardware
    corecore