61 research outputs found

    Estimating the Heritability of Virulence in HIV

    Get PDF
    The rate that HIV-infected individuals progress to AIDS and death varies greatly. Viral load taken during the asymptomatic phase of the disease is one of the best-known predictors of HIV progression rate and transmission risk, and is known to be in uenced by both host and environmental factors. However, the role that the virus itself plays in determining the viral load is less clear. Previous studies have attempted to quantify the amount the viral genome in uences viral load, or the heritability of viral load, using transmission pairs and phylogenetic signal in small sample sizes, but have produced highly disparate estimates. E cient and accurate methods to estimate heritability have been utilised by quantitative geneticists for years, but are rarely applied to non-pedigree data. Here, I present a novel application of a population-scale method based in quantitative genetics to estimate the heritability of viral load in HIV using a viral phylogeny. This new phylogenetic method allows the inclusion of more samples than ever previously used, and avoids confounding e ects associated with transmission pair studies. This new method was applied to the two largest HIV subtypes found in the UK, subtypes B and C, using sequences and clinical data from UK-wide HIV databases. For subtype B (n=8,483) and C (n=1,821), I estimated that 5.7% (CI 2.8{8.6%) and 29.7% (CI 14.8{44.7%) of the variance in viral load is determined by the viral genome, respectively. These estimates suggest that viral in uence on viral load varies greatly between subtypes, with subtype C having much larger viral control over viral load than subtype B. I expanded the phylogenetic method to test whether the component of the viral load determined by the virus has changed over time. In subtype B, I foundevidence of a small but signi cant decrease in the viral component of viral load of -0.05 log10 copies/mL/yr. I built a stochastic, individual-based model capable of simulating a realistic HIV epidemic, with heritable viral loads that in uence transmission and disease progression, capable of generating data sets to assess the accuracy of phylogenetic methods. This was successfully used to generate epidemics approximating those in a small African village and a Western `men who have sex with men' community under a variety of conditions. To test the accuracy of the new phylogenetic heritability estimation method, simulated datasets were generated with the heritability of viral load set at values of 30%, 50%, 70%, and 90%. Unfortunately, complications in the heritability equation used prevented full assessment of the new phylogenetic method on the simulated data. Future development of the model will enable simulation of realistic viral loads under varying heritability values, enabling simulation of data sets that can be used to test this and other heritability estimation methods. This new phylogenetic method allows accurate estimation of heritability in large datasets, and has provided valuable insight into the viral in uence on viral load in HIV

    Importation of Alpha and Delta variants during the SARS-CoV-2 epidemic in Switzerland: Phylogenetic analysis and intervention scenarios.

    Get PDF
    The SARS-CoV-2 pandemic has led to the emergence of various variants of concern (VoCs) that are associated with increased transmissibility, immune evasion, or differences in disease severity. The emergence of VoCs fueled interest in understanding the potential impact of travel restrictions and surveillance strategies to prevent or delay the early spread of VoCs. We performed phylogenetic analyses and mathematical modeling to study the importation and spread of the VoCs Alpha and Delta in Switzerland in 2020 and 2021. Using a phylogenetic approach, we estimated between 383-1,038 imports of Alpha and 455-1,347 imports of Delta into Switzerland. We then used the results from the phylogenetic analysis to parameterize a dynamic transmission model that accurately described the subsequent spread of Alpha and Delta. We modeled different counterfactual intervention scenarios to quantify the potential impact of border closures and surveillance of travelers on the spread of Alpha and Delta. We found that implementing border closures after the announcement of VoCs would have been of limited impact to mitigate the spread of VoCs. In contrast, increased surveillance of travelers could prove to be an effective measure for delaying the spread of VoCs in situations where their severity remains unclear. Our study shows how phylogenetic analysis in combination with dynamic transmission models can be used to estimate the number of imported SARS-CoV-2 variants and the potential impact of different intervention scenarios to inform the public health response during the pandemic

    Nextclade: clade assignment, mutation calling and quality control for viral genomes

    Get PDF
    The variants of concern (VoCs) of SARS-CoV-2 have highlighted the need for a global molecular surveillance of pathogens via whole genome sequencing. Such sequencing, for SARS-CoV-2 and other pathogens, is performed by an ever increasing number of labs across the globe, resulting in an increased need for an easy, fast, and decentralized analysis of initial data. Nextclade aligns viral genomes to a reference sequence, calculates several quality control (QC) metrics, assigns sequences to a clade or variant, and identifies changes in the viral proteins relative to the reference sequence. Nextclade is available as a command-line tool and as a web application with completely client based processing, meaning that sequence data doesn't leave the user's browser

    Interactions between seasonal human coronaviruses and implications for the SARS-CoV-2 pandemic: A retrospective study in Stockholm, Sweden, 2009-2020

    Get PDF
    The four seasonal coronaviruses 229E, NL63, OC43, and HKU1 are frequent causes of respiratory infections and show annual and seasonal variation. Increased understanding about these patterns could be informative about the epidemiology of SARS-CoV-2.; Results from PCR diagnostics for the seasonal coronaviruses, and other respiratory viruses, were obtained for 55,190 clinical samples analyzed at the Karolinska University Hospital, Stockholm, Sweden, between 14 September 2009 and 2 April 2020.; Seasonal coronaviruses were detected in 2130 samples (3.9 %) and constituted 8.1 % of all virus detections. OC43 was most commonly detected (28.4 % of detections), followed by NL63 (24.0 %), HKU1 (17.6 %), and 229E (15.3 %). The overall fraction of positive samples was similar between seasons, but at species level there were distinct biennial alternating peak seasons for the Alphacoronaviruses, 229E and NL63, and the Betacoronaviruses, OC43 and HKU1, respectively. The Betacoronaviruses peaked earlier in the winter season (Dec-Jan) than the Alphacoronaviruses (Feb-Mar). Coronaviruses were detected across all ages, but diagnostics were more frequently requested for paediatric patients than adults and the elderly. OC43 and 229E incidence was relatively constant across age strata, while that of NL63 and HKU1 decreased with age.; Both the Alphacoronaviruses and Betacoronaviruses showed alternating biennial winter incidence peaks, which suggests some type of immune mediated interaction. Symptomatic reinfections in adults and the elderly appear relatively common. Both findings may be of relevance for the epidemiology of SARS-CoV-2

    Potential impact of seasonal forcing on a SARS-CoV-2 pandemic

    Get PDF
    A novel coronavirus (SARS-CoV-2) first detected in Wuhan, China, has spread rapidly since December 2019, causing more than 100,000 confirmed infections and 4000 fatalities (as of 10 March 2020). The outbreak has been declared a pandemic by the WHO on Mar 11, 2020. Here, we explore how seasonal variation in transmissibility could modulate a SARS-CoV-2 pandemic. Data from routine diagnostics show a strong and consistent seasonal variation of the four endemic coronaviruses (229E, HKU1, NL63, OC43) and we parameterise our model for SARS-CoV-2 using these data. The model allows for many subpopulations of different size with variable parameters. Simulations of different scenarios show that plausible parameters result in a small peak in early 2020 in temperate regions of the Northern Hemisphere and a larger peak in winter 2020/2021. Variation in transmission and migration rates can result in substantial variation in prevalence between regions. While the uncertainty in parameters is large, the scenarios we explore show that transient reductions in the incidence rate might be due to a combination of seasonal variation and infection control efforts but do not necessarily mean the epidemic is contained. Seasonal forcing on SARS-CoV-2 should thus be taken into account in the further monitoring of the global transmission. The likely aggregated effect of seasonal variation, infection control measures, and transmission rate variation is a prolonged pandemic wave with lower prevalence at any given time, thereby providing a window of opportunity for better preparation of health care systems

    Impact of cross-border-associated cases on the SARS-CoV-2 epidemic in Switzerland during summer 2020 and 2021

    Get PDF
    During the summers of 2020 and 2021, the number of confirmed cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in Switzerland remained at relatively low levels, but grew steadily over time. It remains unclear to what extent epidemic growth during these periods was a result of the relaxation of local control measures or increased traveling and subsequent importation of cases. A better understanding of the role of cross-border-associated cases (imports) on the local epidemic dynamics will help to inform future surveillance strategies. We analyzed routine surveillance data of confirmed cases of SARS-CoV-2 in Switzerland from 1 June to 30 September 2020 and 2021. We used a stochastic branching process model that accounts for superspreading of SARS-CoV-2 to simulate epidemic trajectories in absence and in presence of imports during summer 2020 and 2021. The Swiss Federal Office of Public Health reported 22,919 and 145,840 confirmed cases of SARS-CoV-2 from 1 June to 30 September 2020 and 2021, respectively. Among cases with known place of exposure, 27% (3,276 of 12,088) and 25% (1,110 of 4,368) reported an exposure abroad in 2020 and 2021, respectively. Without considering the impact of imported cases, the steady growth of confirmed cases during summer periods would be consistent with a value of that is significantly above the critical threshold of 1. In contrast, we estimated at 0.84 (95% credible interval, CrI: 0.78–0.90) in 2020 and 0.82 (95% CrI: 0.74–0.90) in 2021 when imported cases were taken into account, indicating that the local was below the critical threshold of 1 during summer. In Switzerland, cross-border-associated SARS-CoV-2 cases had a considerable impact on the local transmission dynamics and can explain the steady growth of the epidemic during the summers of 2020 and 2021

    Evolution, geographic spreading, and demographic distribution of Enterovirus D68

    Get PDF
    Viral evolution; Age distribution; Molecular evolutionEvolución viral; Distribución de edad; Evolución molecularEvolució viral; Distribució per edats; Evolució molecularWorldwide outbreaks of enterovirus D68 (EV-D68) in 2014 and 2016 have caused serious respiratory and neurological disease. We collected samples from several European countries during the 2018 outbreak and determined 53 near full-length genome (‘whole genome’) sequences. These sequences were combined with 718 whole genome and 1,987 VP1-gene publicly available sequences. In 2018, circulating strains clustered into multiple subgroups in the B3 and A2 subclades, with different phylogenetic origins. Clusters in subclade B3 emerged from strains circulating primarily in the US and Europe in 2016, though some had deeper roots linking to Asian strains, while clusters in A2 traced back to strains detected in East Asia in 2015-2016. In 2018, all sequences from the USA formed a distinct subgroup, containing only three non-US samples. Alongside the varied origins of seasonal strains, we found that diversification of these variants begins up to 18 months prior to the first diagnostic detection during a EV-D68 season. EV-D68 displays strong signs of continuous antigenic evolution and all 2018 A2 strains had novel patterns in the putative neutralizing epitopes in the BC- and DE-loops. The pattern in the BC-loop of the USA B3 subgroup had not been detected on that continent before. Patients with EV-D68 in subclade A2 were significantly older than patients with a B3 subclade virus. In contrast to other subclades, the age distribution of A2 is distinctly bimodal and was found primarily among children and in the elderly. We hypothesize that EV-D68’s rapid evolution of surface proteins, extensive diversity, and high rate of geographic mixing could be explained by substantial reinfection of adults. Better understanding of evolution and immunity across diverse viral pathogens, including EV-D68 and SARS-CoV-2, is critical to pandemic preparedness in the future

    Intra- and interpatient evolution of enterovirus D68 analyzed by whole-genome deep sequencing

    Get PDF
    Worldwide outbreaks of enterovirus D68 (EV-D68) in 2014 and 2016 have caused serious respiratory and neurological disease. To investigate diversity, spread, and evolution of EV-D68 we performed near full-length deep sequencing in fifty-four samples obtained in Sweden during the 2014 and 2016 outbreaks. In most samples, intrapatient variability was low and dominated by rare synonymous variants, but three patients showed evidence of dual infections with distinct EV-D68 variants from the same subclade. Interpatient evolution showed a very strong temporal signal, with an evolutionary rate of 0.0039 ± 0.0001 substitutions per site and year. Phylogenetic trees reconstructed from the sequences suggest that EV-D68 was introduced into Stockholm several times during the 2016 outbreak. Putative neutralization targets in the BC and DE loops of the VP1 protein were slightly more diverse within-host and tended to undergo more frequent substitution than other genomic regions. However, evolution in these loops did not appear to have been driven the emergence of the 2016 B3-subclade directly from the 2014 B1-subclade. Instead, the most recent ancestor of both clades was dated to 2009. The study provides a comprehensive description of the intra- and interpatient evolution of EV-D68, including the first report of intrapatient diversity and dual infections. The new data along with publicly available EV-D68 sequences are included in an interactive phylodynamic analysis on nextstrain.org/enterovirus/d68 to facilitate timely EV-D68 tracking in the future

    Augur: a bioinformatics toolkit for phylogenetic analyses of human pathogens

    Get PDF
    The analysis of human pathogens requires a diverse collection of bioinformatics tools. These tools include standard genomic and phylogenetic software and custom software developed to handle the relatively numerous and short genomes of viruses and bacteria. Researchers increasingly depend on the outputs of these tools to infer transmission dynamics of human diseases and make actionable recommendations to public health officials (Black et al., 2020; Gardy et al., 2015). In order to enable real-time analyses of pathogen evolution, bioinformatics tools must scale rapidly with the number of samples and be flexible enough to adapt to a variety of questions and organisms. To meet these needs, we developed Augur, a bioinformatics toolkit designed for phylogenetic analyses of human pathogens

    COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation.

    Get PDF
    Switzerland is among the countries with the highest number of coronavirus disease-2019 (COVID-19) cases per capita in the world. There are likely many people with undetected SARS-CoV-2 infection because testing efforts are currently not detecting all infected people, including some with clinical disease compatible with COVID-19. Testing on its own will not stop the spread of SARS-CoV-2. Testing is part of a strategy. The World Health Organization recommends a combination of measures: rapid diagnosis and immediate isolation of cases, rigorous tracking and precautionary self-isolation of close contacts. In this article, we explain why the testing strategy in Switzerland should be strengthened urgently, as a core component of a combination approach to control COVID-19
    corecore