8 research outputs found

    A Single Injection of NTG-101 Reduces the Expression of Pain-Related Neurotrophins in a Canine Model of Degenerative Disc Disease

    No full text
    Background: Tissue sources of pain emanating from degenerative discs remains incompletely understood. Canine intervertebral discs (IVDs) were needle puncture injured, 4-weeks later injected with either phosphate-buffered saline (PBS) or NTG-101, harvested after an additional fourteen weeks and then histologically evaluated for the expression of NGFr, BDNF, TrkB and CALCRL proteins. Quantification was performed using the HALO automated cell-counting scoring platform. Immunohistochemical analysis was also performed on human IVD tissue samples obtained from spinal surgery. Immunohistochemical analysis and quantification of neurotrophins and neuropeptides was performed using an in vivo canine model of degenerative disc disease and human degenerative disc tissue sections. Discs injected with NTG-101 showed significantly lower levels of Nerve Growth Factor receptor (NGFr/TrkA, p = 0.0001), BDNF (p = 0.009), TrkB (p = 0.002) and CALCRL (p = 0.008) relative to PBS injections. Human IVD tissue obtained from spinal surgery due to painful DDD show robust expression of NGFr, BDNF, TrkB and CALCRL proteins. A single intradiscal injection of NTG-101 significantly inhibits the expression of NGFr, BDNF, TrkB and CALCRL proteins in degenerative canine IVDs. These results strongly suggest that NTG-101 inhibits the development of neurotrophins that are strongly associated with painful degenerative disc disease and may have profound effects upon the management of patients living with discogenic pain

    Suppressing fatty acid synthase by type I interferon and chemical inhibitors as a broad spectrum anti-viral strategy against SARS-CoV-2.

    No full text
    SARS-CoV-2 is an emerging viral pathogen and a major global public health challenge since December of 2019, with limited effective treatments throughout the pandemic. As part of the innate immune response to viral infection, type I interferons (IFN-I) trigger a signaling cascade that culminates in the activation of hundreds of genes, known as interferon stimulated genes (ISGs), that collectively foster an antiviral state. We report here the identification of a group of type I interferon suppressed genes, including fatty acid synthase (FASN), which are involved in lipid metabolism. Overexpression of FASN or the addition of its downstream product, palmitate, increased viral infection while knockout or knockdown of FASN reduced infection. More importantly, pharmacological inhibitors of FASN effectively blocked infections with a broad range of viruses, including SARS-CoV-2 and its variants of concern. Thus, our studies not only suggest that downregulation of metabolic genes may present an antiviral strategy by type I interferon, but they also introduce the potential for FASN inhibitors to have a therapeutic application in combating emerging infectious diseases such as COVID-19
    corecore