150 research outputs found

    Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes

    Get PDF
    The evolutionary origins of the hypoxia-sensitive cells that trigger amniote respiratory reflexes – carotid body glomus cells, and ‘pulmonary neuroendocrine cells’ (PNECs) - are obscure. Homology has been proposed between glomus cells, which are neural crest-derived, and the hypoxia-sensitive ‘neuroepithelial cells’ (NECs) of fish gills, whose embryonic origin is unknown. NECs have also been likened to PNECs, which differentiate in situ within lung airway epithelia. Using genetic lineage-tracing and neural crest-deficient mutants in zebrafish, and physical fate-mapping in frog and lamprey, we find that NECs are not neural crest-derived, but endoderm-derived, like PNECs, whose endodermal origin we confirm. We discover neural crest-derived catecholaminergic cells associated with zebrafish pharyngeal arch blood vessels, and propose a new model for amniote hypoxia-sensitive cell evolution: endoderm-derived NECs were retained as PNECs, while the carotid body evolved via the aggregation of neural crest-derived catecholaminergic (chromaffin) cells already associated with blood vessels in anamniote pharyngeal arches

    No Evidence for XMRV Nucleic Acids, Infectious Virus or Anti-XMRV Antibodies in Canadian Patients with Chronic Fatigue Syndrome

    Get PDF
    The gammaretroviruses xenotropic murine leukemia virus (MLV)-related virus (XMRV) and MLV have been reported to be more prevalent in plasma and peripheral blood mononuclear cells of chronic fatigue syndrome (CFS) patients than in healthy controls. Here, we report the complex analysis of whole blood and plasma samples from 58 CFS patients and 57 controls from Canada for the presence of XMRV/MLV nucleic acids, infectious virus, and XMRV/MLV-specific antibodies. Multiple techniques were employed, including nested and qRT-PCR, cell culture, and immunoblotting. We found no evidence of XMRV or MLV in humans and conclude that CFS is not associated with these gammaretroviruses

    A hepatitis C virus (HCV) vaccine comprising envelope glycoproteins gpE1/gpE2 derived from a single isolate elicits broad cross-genotype neutralizing antibodies in humans

    Get PDF
    Although a cure for HCV is on the near horizon, emerging drug cocktails will be expensive, associated with side-effects and resistance making a global vaccine an urgent priority given the estimated high incidence of infection around the world. Due to the highly heterogeneous nature of HCV, an effective HCV vaccine which could elicit broadly cross-neutralizing antibodies has represented a major challenge. In this study, we tested for the presence of cross-neutralizing antibodies in human volunteers who were immunized with recombinant glycoproteins gpE1/gpE2 derived from a single HCV strain (HCV1 of genotype 1a). Cross neutralization was tested in Huh-7.5 human hepatoma cell cultures using infectious recombinant HCV (HCVcc) expressing structural proteins of heterologous HCV strains from all known major genotypes, 1-7. Vaccination induced significant neutralizing antibodies against heterologous HCV genotype 1a virus which represents the most common genotype in North America. Of the 16 vaccinees tested, 3 were selected on the basis of strong 1a virus neutralization for testing of broad cross-neutralizing responses. At least 1 vaccinee was shown to elicit broad cross-neutralization against all HCV genotypes. Although observed in only a minority of vaccinees, our results prove the key concept that a vaccine derived from a single strain of HCV can elicit broad cross-neutralizing antibodies against all known major genotypes of HCV and provide considerable encouragement for the further development of a human vaccine against this common, global pathogen

    Developmental variations in plasma leptin, leptin soluble receptor and their molar ratio in healthy infants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leptin and its soluble receptor (sOB-R) are important to regulation of body composition but there are no data on the developmental variations in these plasma variables and their relationship with body composition measurements,</p> <p>Methods</p> <p>Weight, length, and body composition (bone, fat and lean mass) by dual energy absorptiometry, and plasma variables were measured in healthy infants at 2, 4, 8 and 12 months.</p> <p>Results</p> <p>15 whites and 29 African Americans (21 males and 23 females) with mean birth weight 3357 +/- 45 (SEM) g and gestation of 39.3 +/- 0.17 weeks were studied. The overall Z score for weight, length and weight for length during the study were 0.00 +/- 0.15, -0.08 +/- 0.11 and 0.12 +/- 0.14 respectively. With increasing age, plasma leptin (1.0 to 18.2, median 5.5 ng/mL) and sOB-R:leptin molar ratio (10.1 to 247.4, median 59.9) were lowered (r = -0.47, p < 0.01; and r = -0.37, p < 0.05 respectively), best predicted by weight Z score and percentage of fat mass, and higher in African American and female. Presence of body composition measurements eliminated the race and gender effect on the plasma variables. Plasma sOB-R (49.5 to 173.9, median 81.3 ng/mL) did not change significantly with age and was correlated and predicted only by body composition measurements.</p> <p>Conclusion</p> <p>In healthy growing infants, plasma leptin but not sOB-R decreases with age. Gender, race and anthropometric measurements are additional physiological determinants predictive of plasma leptin and the receptor:ligand ratio. However, body composition is the only variable that can predict plasma leptin and its soluble receptor and the receptor: ligand ratio; and body composition measurements eliminated the race and gender effect on these plasma variables.</p

    Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes

    Get PDF
    The evolutionary origins of the hypoxia-sensitive cells that trigger amniote respiratory reflexes - carotid body glomus cells, and 'pulmonary neuroendocrine cells' (PNECs) - are obscure. Homology has been proposed between glomus cells, which are neural crest-derived, and the hypoxia-sensitive 'neuroepithelial cells' (NECs) of fish gills, whose embryonic origin is unknown. NECs have also been likened to PNECs, which differentiate in situ within lung airway epithelia. Using genetic lineage-tracing and neural crest-deficient mutants in zebrafish, and physical fate-mapping in frog and lamprey, we find that NECs are not neural crest-derived, but endoderm-derived, like PNECs, whose endodermal origin we confirm. We discover neural crest-derived catecholaminergic cells associated with zebrafish pharyngeal arch blood vessels, and propose a new model for amniote hypoxia-sensitive cell evolution: endoderm-derived NECs were retained as PNECs, while the carotid body evolved via the aggregation of neural crest-derived catecholaminergic (chromaffin) cells already associated with blood vessels in anamniote pharyngeal arches.This work was funded by the Wellcome Trust (Ph.D. Studentship 086804/Z/08/Z to DH; Senior Investigator Award 102889/Z/13/Z to AST), the NIDCR/NIH (R21-DE021509 to SF; R01-DE018477 to EWK), the NIDDK/NIH (1DP2DK098092 to PDSD), the NIH (R01-HL092217 to EWK), the Zebrafish Initiative of the Vanderbilt University Academic Venture Capital Fund (to EWK), the Vanderbilt International Scholar Program (to GU), the HFSP (Long-Term Fellowship to CM) and the Swiss National Science Foundation (Advanced Postdoctoral Fellowship and Professorship to CM). For further information, please visit the publisher's website
    • …
    corecore