235 research outputs found

    Apoptosis control and proliferation marker in human normal and neoplastic adrenocortical tissues

    Get PDF
    We evaluated by immunohistochemistry the expression of the Bcl-2 and p53 proteins, as markers of apoptosis control, and of MIB-1, as a marker of cell proliferation, in a series of normal and neoplastic adrenocortical tissues. The specimens were 13 normal adrenals, 13 aldosterone-producing adenomas, 13 non-functioning adenomas and 16 carcinomas. Results were calculated as percentage of immunostained cells by using specific antibodies. No p53 protein was detected in any of the adrenocortical adenomas (functioning and non functioning) or normal adrenals, while p53 was overexpressed in 15 out of 16 carcinomas. In particular, 10 adrenal cancer specimens (62.5%) showed strong staining in a high percentage (range 10–50%) of the malignant cells. The percentage of Bcl-2 positive cells was higher (P<0.05 or less) in non-functioning adenomas (8.1±1.9%) and in carcinomas (14.9±5.6%) than in normals (2.9±0.9%) and aldosterone-producing adenomas (5.3±1.3%) since four specimens of the non-functioning adenomas-group (30.7%) and six of the carcinomas-group (37.5%) showed over 10% positivity (cut-off for normal values, set at 90th percentile of our controls). MIB-1 positivity was 0.50±0.36% in normals, 0.54±0.08% in non-functioning adenomas and 0.54±0.08% in aldosterone-producing adenomas. MIB-1 was expressed in all carcinomas with values (13.7±3.1%) significantly (P<0.0006) higher than in the other groups. In conclusion, the present data indicate that the apoptosis control and proliferation activity evaluated by the p53 and MIB-1 proteins are impaired in adrenal carcinomas but preserved in adenomas, independently of their functional status. Therefore, these immunohistochemical markers, overexpressed in carcinomas only, may be useful in the diagnosis of malignancy in adrenocortical tumours. Whether Bcl-2 positivity found in some carcinomas and non-functioning adenomas may constitute, in the latter, a negative prognostic marker is still unknown

    Effect of Curcuma longa and Ocimum sanctum on myocardial apoptosis in experimentally induced myocardial ischemic-reperfusion injury

    Get PDF
    BACKGROUND: In the present investigation, the effect of Curcuma longa (Cl) and Ocimum sanctum (Os) on myocardial apoptosis and cardiac function was studied in an ischemia and reperfusion (I-R) model of myocardial injury. METHODS: Wistar albino rats were divided into four groups and orally fed saline once daily (sham, control IR) or Cl (100 mg/kg; Cl-IR) or Os (75 mg/kg; Os-IR) respectively for 1 month. On the 31(st )day, in the rats of the control IR, Cl-IR and Os-IR groups LAD occlusion was undertaken for 45 min, and reperfusion was allowed for 1 h. The hemodynamic parameters{mean arterial pressure (MAP), heart rate (HR), left ventricular end-diastolic pressure (LVEDP), left ventricular peak positive (+) LVdP/dt (rate of pressure development) and negative (-) LVdP/dt (rate of pressure decline)} were monitored at pre-set points throughout the experimental duration and subsequently, the animals were sacrificed for immunohistopathological (Bax, Bcl-2 protein expression & TUNEL positivity) and histopathological studies. RESULTS: Chronic treatment with Cl significantly reduced TUNEL positivity (p < 0.05), Bax protein (p < 0.001) and upregulated Bcl-2 (p < 0.001) expression in comparison to control IR group. In addition, Cl demonstrated mitigating effects on several myocardial injury induced hemodynamic {(+)LVdP/dt, (-) LVdP/dt & LVEDP} and histopathological perturbations. Chronic Os treatment resulted in modest modulation of the hemodynamic alterations (MAP, LVEDP) but failed to demonstrate any significant antiapoptotic effects and prevent the histopathological alterations as compared to control IR group. CONCLUSION: In the present study, significant cardioprotection and functional recovery demonstrated by Cl may be attributed to its anti-apoptotic property. In contrast to Os, Cl may attenuate cell death due to apoptosis and prevent the impairment of cardiac performance

    Differential regulation of nuclear and mitochondrial Bcl-2 in T cell apoptosis

    Get PDF
    Activated T cells require anti-apoptotic cytokines for their survival. The anti-apoptotic effects of these factors are mediated by their influence on the balance of expression and localisation of pro- and anti-apoptotic members of the Bcl-2 family. Among the anti-apoptotic Bcl-2 family members, the expression level of Bcl-2 itself and its interaction with the pro-apoptotic protein Bim are now regarded as crucial for the regulation of survival in activated T cells. We studied the changes in Bcl-2 levels and its subcellular distribution in relation to mitochondrial depolarisation and caspase activation in survival factor deprived T cells. Intriguingly, the total Bcl-2 level appeared to remain stable, even after caspase 3 activation indicated entry into the execution phase of apoptosis. However, cell fractionation experiments showed that while the dominant nuclear pool of Bcl-2 remained stable during apoptosis, the level of the smaller mitochondrial pool was rapidly downregulated. Signals induced by anti-apoptotic cytokines continuously replenish the mitochondrial pool, but nuclear Bcl-2 is independent of such signals. Mitochondrial Bcl-2 is lost rapidly by a caspase independent mechanism in the absence of survival factors, in contrast only a small proportion of the nuclear pool of Bcl-2 is lost during the execution phase and this loss is a caspase dependent process. We conclude that these two intracellular pools of Bcl-2 are regulated through different mechanisms and only the cytokine-mediated regulation of the mitochondrial pool is relevant to the control of the initiation of apoptosis

    Tamoxifen induces oxidative stress and apoptosis in oestrogen receptor-negative human cancer cell lines

    Get PDF
    Recent data have demonstrated that the anti-oestrogen tamoxifen (TAM) is able to facilitate apoptosis in cancer cells not expressing oestrogen receptor (ER). In an attempt to identify the biochemical pathway for this phenomenon, we investigated the role of TAM as an oxidative stress agent. In two ER-negative human cancer cell lines, namely T-leukaemic Jurkat and ovarian A2780 cancer cells, we have demonstrated that TAM is able to generate oxidative stress, thereby causing thiol depletion and activation of the transcriptional factor NF-κB. As described for other oxidative agents, TAM was able to induce either cell proliferation or apoptosis depending on the dose. When used at the lowest dose tested (0.1 μM), a slight proliferative effect of TAM was noticed in terms of cell counts and DNA synthesis rate, whereas at higher doses (10 μM) a consistent occurrence of apoptosis was detected. Importantly, the induction of apoptosis by TAM is not linked to down-regulation or functional inactivation by phosphorylation of the antiapoptotic bcl-2 protein. © 1999 Cancer Research Campaig

    Influence of oral beclomethasone dipropionate on early non-infectious pulmonary outcomes after allogeneic hematopoietic cell transplantation: results from two randomized trials.

    Get PDF
    Early non-infectious pulmonary complications represent a significant cause of mortality after hematopoietic cell transplantation (HCT). We tested the hypothesis that oral beclomethasone dipropionate (BDP) is effective for preventing early non-infectious pulmonary complications after allogeneic HCT. We retrospectively reviewed the medical records of 120 patients, 60 in each treatment arm, to identify non-infectious and infectious pulmonary events and pulmonary function test results from all patients who participated in two randomized trials of oral BDP for treatment of acute gastrointestinal GVHD. 17-Beclomethasone monopropionate (17-BMP), the active metabolite of BDP, was evaluated in blood from the right atrium in four patients. Thirty-three of 42 (79%) placebo-treated patients experienced a decrease of the DL(CO) from pretransplant to day 80 after transplant, compared with 27 of 49 (55%) BDP-treated patients (P=0.02). In the first 200 days after randomization, there were no cases of non-infectious pulmonary complications in BDP-treated patients, vs four cases among placebo-treated patients (P=0.04). Levels of 17-BMP were detected in atrial blood at steady state. Delivery of a potent glucocorticoid such as 17-BMP to the pulmonary artery after oral dosing of BDP may be useful in modulating pulmonary inflammation and preventing the development of non-infectious pulmonary complications after allogeneic HCT.Bone Marrow Transplantation advance online publication, 29 June 2009; doi:10.1038/bmt.2009.129

    Pretubulysin: From Hypothetical Biosynthetic Intermediate to Potential Lead in Tumor Therapy

    Get PDF
    Pretubulysin is a natural product that is found in strains of myxobacteria in only minute amounts. It represents the first enzyme-free intermediate in the biosynthesis of tubulysins and undergoes post-assembly acylation and oxidation reactions. Pretubulysin inhibits the growth of cultured mammalian cells, as do tubulysins, which are already in advanced preclinical development as anticancer and antiangiogenic agents. The mechanism of action of this highly potent compound class involves the depolymerization of microtubules, thereby inducing mitotic arrest. Supply issues with naturally occurring derivatives can now be circumvented by the total synthesis of pretubulysin, which, in contrast to tubulysin, is synthetically accessible in gram-scale quantities. We show that the simplified precursor is nearly equally potent to the parent compound. Pretubulysin induces apoptosis and inhibits cancer cell migration and tubulin assembly in vitro. Consequently, pretubulysin appears to be an ideal candidate for future development in preclinical trials and is a very promising early lead structure in cancer therapy

    Defining the tipping point. A complex cellular life/death balance in corals in response to stress

    Get PDF
    Apoptotic cell death has been implicated in coral bleaching but the molecules involved and the mechanisms by which apoptosis is regulated are only now being identified. In contrast the mechanisms underlying apoptosis in higher animals are relatively well understood. To better understand the response of corals to thermal stress, the expression of coral homologs of six key regulators of apoptosis was studied in Acropora aspera under conditions simulating those of a mass bleaching event. Significant changes in expression were detected between the daily minimum and maximum temperatures. Maximum daily temperatures from as low as 3°C below the bleaching threshold resulted in significant changes in both pro- and anti-apoptotic gene expression. The results suggest that the control of apoptosis is highly complex in this eukaryote-eukaryote endosymbiosis and that apoptotic cell death cascades potentially play key roles tipping the cellular life/death balance during environmental stress prior to the onset of coral bleaching
    corecore