301 research outputs found

    The response of stratified swirling flames to acoustic forcing: Experiments and comparison to model

    Get PDF
    The gradient of local equivalence ratio in reacting mixtures significantly affects the flame structure and their corresponding response to acoustic velocity perturbations. We study the effect of acoustic velocity fluctuations on flames created by two co-annular, swirling streams with different equivalence ratios to simulate the effects of pilot-mains split. The flames are stabilized both by a bluff body and by swirl. The flame responses were measured via chemiluminescence as a function of frequency, in the linear perturbation range. A linearized version of the G-equation model is employed to describe the flame dynamics, combined with effects of axial and azimuthal velocity perturbations downstream of the swirlers. The model accounts for the phase shift between the main acoustic and swirler vortical perturbations, which propagate at different speeds. The very different flame structures generated by different fuel splits lead to different flame responses. Models based on time delay of vortical disturbances are able to capture the behaviour reasonably well for the case of outer fuel enrichment, but offer limited agreement for the case of the inner enriched flame, particularly under higher mean equivalence ratios.The authors acknowledge the support provided by the Cambridge Overseas Trust and China Scholarship Council. Additional funding was provided by Rolls-Royce plc for the initial set up of the experiments.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.proci.2014.05.04

    Conditional analysis of turbulent premixed and stratified flames on local equivalence ratio and progress of reaction

    Get PDF
    Previous studies on the Cambridge/Sandia stratified burner have produced a comprehensive database of line Rayleigh/Raman/CO LIF measurements of scalars, as well as LDA and PIV measurements of velocity, for flames under non-uniform mixture fraction, under moderate turbulent conditions where the ratio of the turbulent velocity fluctuations to the laminar flame speed is of order 10. In prior work, we applied multiple conditioning methods to demonstrate how local stratification increases the levels of CO and H2, relative to the corresponding turbulent premixed flame, and enhances surface density function (SDF) and scalar dissipation rate of progress of reaction (SDR), based on extent of temperature rise, at a particular location in the flame where the mixing layer and flame brush cross. In the present study, we examine the global features of selected flames at all locations, by obtaining probability density functions (PDFs) for species concentrations, SDRs, and SDFs, conditioned on local equivalence ratio and location in the flame brush throughout the domain. We find that for most cases, species profiles as a function of temperature are well represented by laminar flame relationships at the local equivalence ratio, with some deviations attributable to either differential diffusion near the flame base and local stratification effects further downstream where the flame brush crosses the mixing layer. In particular, CO2 is significantly affected by differential diffusion, and CO and H2 by stratification. However, the stratification effects on the species are relatively minor when conditioned on local equivalence ratio, a simplifying result in the context of modeling. Measurements of the gradient of progress of reaction and scalar dissipation rates, conditioned on local equivalence ratio, show that the thermal zone of the flame is thickened by turbulence: the mean SDF and SDR values are in general lower than those of unstrained laminar flames. The effect is greater under rich conditions, with conditional mean SDR decreasing to less than half of the corresponding laminar value. The extent of flame thickening is the same in the premixed as the stratified case, once the stratified measurements are conditioned on the same equivalence ratio.M. Mustafa Kamal acknowledges funding from University of Engineering and Technology Peshawar (Pakistan). The measurements at Sandia National Labs were sponsored by the United States Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. The authors also thank Dr. Akihiro Hayakawa for his contributions to the laminar flame calculations and Dr. Saravanan Balusamy for his valuable suggestions regarding data processing

    Gas phase Raman spectroscopy: Comparison of continuous wave and cavity based methods

    Get PDF
    © 2018 The Author(s). Comparison of cavity-enhanced Raman spectroscopy to continuous wave detection for gas phase molecules in air. We show continuous measurements with calculated emission and discuss the potential benefits (two orders more signal) of using a cavity.EPSR

    Measuring ultrafine aerosols by direct photoionization and charge capture in continuous flow

    Get PDF
    Direct ultraviolet (UV) photoionization enables electrical charging of aerosol nanoparticles with- out relying on the collision of particles and ions. In this work, a low-strength electric field is applied during particle photoionization to capture charge as it is photoemitted from the par- ticles in continuous flow, yielding a novel electrical current measurement. As in conventional photocharging-based measurement devices, a distinct electrical current from the remaining pho- tocharged particles is also measured downstream. The two distinct measured currents are proportional to the total photoelectrically active area of the particles. A three dimensional numerical model for particle and ion (dis)charging and transport is evaluated by comparing simulations of integrated electric currents with those from charged soot particles and ions in an experimental photoionization chamber. The model and experiment show good quantitative agreement for a single empirical constant, KcI, over a range of particle sizes and concentrations providing confidence in the theoretical equations and numerical method used

    Favre- and Reynolds-averaged velocity measurements: Interpreting PIV and LDA measurements in combustion

    Get PDF
    Previous studies using particle image velocimetry (PIV) and laser Doppler anemometry (LDA) have raised the question of how these measurements should be compared. This study reports on the difference between Favre-averaged and Reynolds-averaged velocity statistics for a turbulent burner using PIV and LDA for unconditional and conditional velocity measurements. The experimental characterization of flow fields of premixed and stratified methane/air flames is carried out under globally turbulent lean conditions (global equivalence ratio at 0.75), over a range of stratifications and swirl numbers. Unconditioned velocity data was acquired using aluminium oxide to seed the flow field. Conditioned measurements were performed using vegetable oil aerosol as seed, which burns through the flame front, thus allowing only the non-reacting flow velocities to be obtained. A critical comparison of unconditioned velocity profiles measured using both PIV and LDA, including axial, radial, and tangential components is made against conditioned and reconstructed mean velocities at different cross-sections of the flame. The comparison reveals how the differences between the Favre-averaged (unconditioned) and the Reynolds-averaged (conditioned) velocity measurements in the flame brush region can be accounted for using the mean progress of reaction, and highlights the limits of the accuracy and agreement between PIV and LDA measurements.The authors would like to thank the University of Engineering and Technology Peshawar (Pakistan) and the University of Cambridge for their financial contributions to this workThis is the author accepted manuscript. The advanced access article on the publisher's website can be found at: http://www.sciencedirect.com/science/article/pii/S1540748914002193# © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved

    High spatial resolution laser cavity extinction and laser-induced incandescence in low-soot-producing flames

    Get PDF
    Abstract Accurate measurement techniques for in situ determination of soot are necessary to understand and monitor the process of soot particle production. One of these techniques is line-of-sight extinction, which is a fast, low-cost and quantitative method to investigate the soot volume fraction in flames. However, the extinction-based technique suffers from relatively high measurement uncertainty due to low signal-to-noise ratio, as the single-pass attenuation of the laser beam intensity is often insufficient. Multi-pass techniques can increase the sensitivity, but may suffer from low spatial resolution. To overcome this problem, we have developed a high spatial resolution laser cavity extinction technique to measure the soot volume fraction from low-soot-producing flames. A laser beam cavity is realised by placing two partially reflective concave mirrors on either side of the laminar diffusion flame under investigation. This configuration makes the beam convergent inside the cavity, allowing a spatial resolution within 200 μm, whilst increasing the absorption by an order of magnitude. Three different hydrocarbon fuels are tested: methane, propane and ethylene. The measurements of soot distribution across the flame show good agreement with results using laser-induced incandescence (LII) in the range from around 20 ppb to 15 ppm.B. Tian is funded through a fellowship provided by China Scholarship Council. Y. Gao and S. Balusamy are funded through a grant from EPSRC EP/K02924X/1 and EP/G035784/1, respectively.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00340-015-6156-

    Extracting flame describing functions in the presence of self-excited thermoacoustic oscillations

    Get PDF
    One of the key elements in the prediction of thermoacoustic oscillations is the determination of the acoustic response of flames as an element in an acoustic network, in the form of a flame describing function (FDF). In order to obtain a response, flames often have to be confined into a system with its own acoustic response. Separating the pure flame response and that of the system can be complicated by the non-linear effects that the flame can have on the overall system response. In this paper, we investigate whether it is possible to obtain a flame response via the usual methods of dynamic chemiluminescence and pressure measurements, starting from an unforced system with incipient self-excitations at a given frequency fs, in the form of a stabilized flame at atmospheric pressure with a 700 mm tube as a combustor. The flame is forced at discrete frequencies from 20 to 400 Hz, away from the self-excitation, and the response of the flame is measured using OH* chemiluminescence. This response was compared to a flame response measured in a short tube with no other excitations. The results show that both the gain and phase can be entirely dominated by the behavior of the self-excitation, so that in general it is not possible to extract reliable gain and phase information as if the forced and self-excited modes acted independently and linearly. Although the gain in this particular case was not significantly affected, the phase information of the original flame became dominated by the triggered self-excitation. Boundary conditions and systems used for flame acoustic forcing therefore need to be carefully controlled whenever there is a possibility of self-excitation.This work was funded by EPSRC-UK under the SAMULET project (EP/G035784/1). H. Han was supported through a CSC fellowship
    corecore