19 research outputs found

    Biological Activity of Different Forms of Oxidized Parathyroid Hormone

    Get PDF
    Preclinical studies have shown that parathyroid hormone (PTH) loses its biological effects through oxidation. PTH can be oxidized at methionines 8 and 18. Three possible variations of oxidized PTH (oxPTH) exist: Met8(ox)PTH, Met18(ox)PTH, and Met8, Met18(di-ox)PTH. A recent study showed that Met18(ox)PTH retained biological activity and was able to upregulate Fgf23 gene expression, whereas Met8(ox)PTH and Met8, Met18(di-ox)PTH showed less or no biological activity. An earlier study likewise showed that the oxidation of Met18 has minor effects on the secondary structure of PTH, whereas the oxidation of Met8 causes substantial structural changes, consistent with another study showing that oxidization just at Met8 blocks the generation of the second messenger cAMP, whereas the effect of the oxidation of Met18 is much less potent in inhibiting cAMP formation. A considerable percentage of circulating PTH in chronic kidney disease (CKD) patients is oxidized. However, we do not know the relative amounts of the different forms of oxPTH with agonistic, partial agonistic, or even antagonistic biological actions in different CKD populations. This might explain different clinical findings in the different CKD populations analyzed so far. The currently available method that was used in these clinical studies just distinguishes between oxPTH and noxPTH without being able to differentiate between different forms of oxPTH. Only methods of PTH measurement that are able to differentiate between PTH forms (noxPTH, Met8(ox)PTH, Met18(ox)PTH, and Met8, Met18(di-ox)PTH) have the potential to improve patient care, because only these methods will definitively separate bioactive from non-bioactive PTH forms. Such methods need to be developed, validated, and used in prospective randomized clinical trials to define the potential value of bioactive PTH forms as a predictor of cardiovascular events, mortality, and bone turnover

    25(OH)D-but not 1,25(OH)2D–Is an independent risk factor predicting graft loss in stable kidney transplant recipients

    Get PDF
    BackgroundVitamin D deficiency (VDD) or vitamin D insufficiency is common in kidney transplant recipients (KTRs). The impact of VDD on clinical outcomes in KTRs remain poorly defined and the most suitable marker for assessing vitamin D nutritional status in KTRs is unknown so far.MethodsWe conducted a prospective study including 600 stable KTRs (367 men, 233 women) and a meta-analysis to pool existing evidence to determine whether 25(OH)D or 1,25(OH)2D predicted graft failure and all-cause mortality in stable KTRs.ResultsCompared with a higher 25(OH)D concentration, a low concentration of 25(OH)D was a risk factor for graft failure (HR 0.946, 95% CI 0.912−0.981, p = 0.003), whereas 1,25 (OH)2D was not associated with the study end-point graft loss (HR 0.993, 95% CI 0.977−1.009, p = 0.402). No association was found between either 25(OH)D or 1,25 (OH)2D and all-cause mortality. We furthermore conducted a meta-analysis including 8 studies regarding the association between 25(OH)D or 1,25(OH)2D and graft failure or mortality, including our study. The meta-analysis results were consistent with our study in finding that lower 25(OH)D levels were significantly associated with the risk of graft failure (OR = 1.04, 95% CI: 1.01−1.07), but not associated with mortality (OR = 1.00, 95% CI: 0.98−1.03). Lower 1,25(OH)2D levels were not associated with the risk of graft failure (OR = 1.01, 95% CI: 0.99−1.02) and mortality (OR = 1.01, 95% CI: 0.99−1.02).ConclusionBaseline 25(OH)D concentrations but not 1,25(OH)2D concentrations were independently and inversely associated with graft loss in adult KTRs

    Inverse correlation of intact PTH, oxidized PTH as well as non-oxidized PTH with 25-hydroxyvitamin D3 in kidney transplant recipients

    Get PDF
    Background 25-hydroxyvitamin D (25(OH)D) and potentially also 1,25-dihydroxyvitamin D (1,25(OH)2D) inhibits the synthesis of parathyroid hormone (PTH) in the chief cells of the parathyroid gland. Clinical studies showing a negative correlation between (25(OH)D and PTH are in good agreement with these findings in basic science studies. However, PTH was measured in these studies with the currently clinically used 2nd or 3rd generation intact PTH (iPTH) assay systems. iPTH assays cannot distinguish between oxidized forms of PTH and non-oxidized PTH. Oxidized forms of PTH are the by far most abundant form of PTH in the circulation of patients with impaired kidney function. Oxidation of PTH causes a loss of function of PTH. Given that the clinical studies done so far were performed with an PTH assay systems that mainly detect oxidized forms of PTH, the real relationship between bioactive non-oxidized PTH and 25(OH)D as well as 1,25(OH)2D is still unknown. Methods To address this topic, we compared for the first time the relationship between 25(OH)D as well as 1,25(OH)2D and iPTH, oxPTH as well as fully bioactive n-oxPTH in 531 stable kidney transplant recipients in the central clinical laboratories of the Charité. Samples were assessed either directly (iPTH) or after oxPTH (n-oxPTH) was removed using a column that used anti-human oxPTH monoclonal antibodies, a monoclonal rat/mouse parathyroid hormone antibody (MAB) was immobilized onto a column with 500 liters of plasma samples. Spearman correlation analysis and Multivariate linear regression were used to evaluate the correlations between the variables. Results There was an inverse correlation between 25(OH)D and all forms of PTH, including oxPTH (iPTH: r=-0.197, p<0.0001; oxPTH: r=-0.203, p<0.0001; n-oxPTH: r=-0.146, p=0.001). No significant correlation was observed between 1,25(OH)2D and all forms of PTH. Multiple linear regression analysis considering age, PTH (iPTH, oxPTH and n-oxPTH), serum calcium, serum phosphor, serum creatinine, fibroblast growth factor 23 (FGF23), osteoprotegerin (OPG), albumin, and sclerostin as confounding factors confirmed these findings. Subgroup analysis showed that our results are not affected by sex and age. Conclusion In our study, all forms of PTH are inversely correlated with 25-hydroxyvitamin D (25(OH)D). This finding would be in line with an inhibition of the synthesis of all forms of PTH (bioactive n-oxPTH and oxidized forms of PTH with minor or no bioactivity) in the chief cells of the parathyroid glad

    C-terminal and intact FGF23 in kidney transplant recipients and their associations with overall graft survival

    Get PDF
    Background Increased fibroblast growth factor 23 (FGF23) is a risk factor for mortality, cardiovascular disease, and progression of chronic kidney disease. Limited data exist comparing the association of either c-terminal FGF23 (cFGF23) or intact FGF23 (iFGF23) in kidney transplant recipients (KTRs) with overall (all-cause) graft loss. Methods We conducted a prospective observational cohort study in 562 stable kidney transplant recipients. Patients were followed for graft loss and all-cause mortality for a median follow-up of 48 months. Results During a median follow-up of 48 months, 94 patients had overall graft loss (primary graft loss or death with functioning graft). Both cFGF23 and iFGF23 concentrations were significantly higher in patients with overall graft loss than those without (24.59 [11.43–87.82] versus 10.67 [5.99–22.73] pg/ml; p < 0.0001 and 45.24 [18.63–159.00] versus 29.04 [15.23–60.65] pg/ml; p = 0.002 for cFGF23 and iFGF23, respectively). Time-dependent ROC analysis showed that cFGF23 concentrations had a better discriminatory ability than iFGF23 concentrations in predicting overall (all-cause) graft loss. Cox regression analyses adjusted for risk factors showed that cFGF23 (HR for one unit increase of log transformed cFGF23: 1.35; 95% CI, 1.01–1.79; p = 0.043) but not iFGF23 (HR for one unit increase of log transformed iFGF23: 0.97; 95% CI, 0.75–1.25; p = 0.794) was associated with the overall graft loss. Conclusion Elevated cFGF23 concentrations at baseline are independently associated with an increased risk of overall graft loss. iFGF23 measurements were not independently associated with overall graft loss. The cFGF23 ELISA might detect bioactive FGF23 fragments that are not detected by the iFGF23 ELISA

    Urinary Vitamin D Binding Protein and KIM-1 Are Potent New Biomarkers of Major Adverse Renal Events in Patients Undergoing Coronary Angiography

    Get PDF
    Background Vitamin-D-binding protein (VDBP) is a low molecular weight protein that is filtered through the glomerulus as a 25-(OH) vitamin D 3/VDBP complex. In the normal kidney VDBP is reabsorbed and catabolized by proximal tubule epithelial cells reducing the urinary excretion to trace amounts. Acute tubular injury is expected to result in urinary VDBP loss. The purpose of our study was to explore the potential role of urinary VDBP as a biomarker of an acute renal damage. Method We included 314 patients with diabetes mellitus or mild renal impairment undergoing coronary angiography and collected blood and urine before and 24 hours after the CM application. Patients were followed for 90 days for the composite endpoint major adverse renal events (MARE: need for dialysis, doubling of serum creatinine after 90 days, unplanned emergency rehospitalization or death). Results Increased urine VDBP concentration 24 hours after contrast media exposure was predictive for dialysis need (no dialysis: 113.06 ± 299.61ng/ml, n = 303; need for dialysis: 613.07 ± 700.45 ng/ml, n = 11, Mean ± SD, p<0.001), death (no death during follow-up: 121.41 ± 324.45 ng/ml, n = 306; death during follow-up: 522.01 ± 521.86 ng/ml, n = 8; Mean ± SD, p<0.003) and MARE (no MARE: 112.08 ± 302.00ng/ml, n = 298; MARE: 506.16 ± 624.61 ng/ml, n = 16, Mean ± SD, p<0.001) during the follow-up of 90 days after contrast media exposure. Correction of urine VDBP concentrations for creatinine excretion confirmed its predictive value and was consistent with increased levels of urinary Kidney Injury Molecule-1 (KIM-1) and baseline plasma creatinine in patients with above mentioned complications. The impact of urinary VDBP and KIM-1 on MARE was independent of known CIN risk factors such as anemia, preexisting renal failure, preexisting heart failure, and diabetes. Conclusions Urinary VDBP is a promising novel biomarker of major contrast induced nephropathy-associated events 90 days after contrast media exposure

    Even high normal blood pressure affects live birth rate in women undergoing fresh embryo transfer

    Get PDF
    STUDY QUESTION Do differences in blood pressure within the normal range have any impacts on the live birth rate (primary outcome) or biochemical pregnancy rate (beta-hCG positivity), clinical pregnancy rate (heart beating in ultrasound), abortion rate and ectopic pregnancy rate (secondary outcomes) of fresh embryo transfer in women undergoing their IVF/ICSI treatment? SUMMARY ANSWER Even rather small differences in baseline blood pressure in women with normal blood pressure according to current guidelines undergoing fresh embryo transfer after IVF/ICSI affects substantially the live birth rate. WHAT IS KNOWN ALREADY Pre-pregnancy hypertension is a well-known risk factor for adverse pregnancy events such as preeclampsia, fetal growth restriction, placental abruption and adverse neonatal events. It is likewise well known that hypertension during pregnancy in women undergoing ART is associated with adverse pregnancy outcomes. However, whether blood pressure at the high end of the normal range has an impact on ART is unknown. STUDY DESIGN, SIZE, DURATION It is a prospective observational cohort study based on a single IVF center between January 2017 and December 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS Two thousand four hundred and eighteen women with normal blood pressure undergoing fresh embryo transfer after IVF/ICSI at the Reproductive and Genetic Hospital of CITIC-Xiangya were enrolled in this study. MAIN RESULTS AND THE ROLE OF CHANCE Blood pressure was measured at the first visit when women consulted the IVF center due to infertility. In women with a successful pregnancy outcome (1487 live births out of 2418 women undergoing fresh embryo transfer after IVF/ICSI), systolic blood pressure (SBP) (114.1 ± 9.48 mmHg versus 115.4 ± 9.8 mmHg, P = 0.001) and diastolic blood pressure (DBP) (74.5 ± 7.5 mmHg versus 75.3 ± 7.34 mmHg, P = 0.006) were lower than in those who did not achieve live births. Multivariate logistic regression analysis revealed that SBP (OR: 0.987, 95% CI: 0.979–0.996, P = 0.004) and DBP (OR: 0.986, 95% CI: 0.975–0.998, P = 0.016) were negatively associated with live birth. Similarly, SBP was significantly negatively related to clinical pregnancy rate (OR: 0.990, 95% CI: 0.981–0.999, P = 0.033), while for DBP the association was not statistically significant (OR: 0.994, 95% CI: 0.982–1.006, P = 0.343). However, both SBP and DBP were positively associated with miscarriage OR: 1.021 (95% CI: 1.004–1.037, P = 0.013) and OR: 1.027 (95% CI: 1.005–1.049, P = 0.014), respectively. Both SBP and DBP were unrelated to biochemical pregnancy (hCG positivity), implantation and ectopic pregnancy rate. LIMITATIONS, REASONS FOR CAUTION Whether lowering blood pressure before initiating ART treatment in women with SBP or DBP higher than the thresholds defined in our study will confer a benefit is unknown. Also, we cannot exclude bias due to different ethnicities. Moreover, participants in our study only received fresh embryo transfer, whether the results could apply to frozen embryo transfer is unclear. WIDER IMPLICATIONS OF THE FINDINGS Our study challenges the current blood pressure goals in women undergoing fresh embryo transfer after IVF/ICSI. Further studies are needed to figure out the mechanism and effective approach to increase IVF/ICSI pregnancy outcomes. STUDY FUNDING/COMPETING INTEREST(S) Hunan Provincial Grant for Innovative Province Construction (2019SK4012). The authors declare that there were no conflicts of interest in this study. TRIAL REGISTRATION NUMBER N/A

    Biological Activity of Different Forms of Oxidized Parathyroid Hormone

    No full text
    Preclinical studies have shown that parathyroid hormone (PTH) loses its biological effects through oxidation. PTH can be oxidized at methionines 8 and 18. Three possible variations of oxidized PTH (oxPTH) exist: Met8(ox)PTH, Met18(ox)PTH, and Met8, Met18(di-ox)PTH. A recent study showed that Met18(ox)PTH retained biological activity and was able to upregulate Fgf23 gene expression, whereas Met8(ox)PTH and Met8, Met18(di-ox)PTH showed less or no biological activity. An earlier study likewise showed that the oxidation of Met18 has minor effects on the secondary structure of PTH, whereas the oxidation of Met8 causes substantial structural changes, consistent with another study showing that oxidization just at Met8 blocks the generation of the second messenger cAMP, whereas the effect of the oxidation of Met18 is much less potent in inhibiting cAMP formation. A considerable percentage of circulating PTH in chronic kidney disease (CKD) patients is oxidized. However, we do not know the relative amounts of the different forms of oxPTH with agonistic, partial agonistic, or even antagonistic biological actions in different CKD populations. This might explain different clinical findings in the different CKD populations analyzed so far. The currently available method that was used in these clinical studies just distinguishes between oxPTH and noxPTH without being able to differentiate between different forms of oxPTH. Only methods of PTH measurement that are able to differentiate between PTH forms (noxPTH, Met8(ox)PTH, Met18(ox)PTH, and Met8, Met18(di-ox)PTH) have the potential to improve patient care, because only these methods will definitively separate bioactive from non-bioactive PTH forms. Such methods need to be developed, validated, and used in prospective randomized clinical trials to define the potential value of bioactive PTH forms as a predictor of cardiovascular events, mortality, and bone turnover

    Urinary cGMP predicts major adverse renal events in patients with mild renal impairment and/or diabetes mellitus before exposure to contrast medium.

    No full text
    The use of iodine-based contrast agents entails the risk of contrast induced nephropathy (CIN). Radiocontrast agents elicit the third most common cause of nephropathy among hospitalized patients, accounting for 11-12% of cases. CIN is connected with clinically significant consequences, including increased morbidity, prolonged hospitalization, increased risk of complications, potential need for dialysis, and increased mortality rate. The number of in-hospital examinations using iodine-based contrast media has been significantly increasing over the last decade. In order to protect patients from possible complications of such examinations, new biomarkers are needed that are able to predict a risk of contrast-induced nephropathy. Urinary and plasma cyclic guanosine monophosphate (cGMP) concentrations are influenced by renal function. Urinary cGMP is primarily of renal cellular origin. Therefore, we assessed if urinary cGMP concentration may predict major adverse renal events (MARE) after contrast media exposure during coronary angiography.Urine samples were prospectively collected from non-randomized consecutive patients with either diabetes or preexisting impaired kidney function receiving intra-arterial contrast medium (CM) for emergent or elective coronary angiography at the Charité Campus Mitte, University Hospital Berlin. Urinary cGMP concentration in spot urine was analyzed 24 hours after CM exposure. Patients were followed up over 90 days for occurrence of death, initiation of dialysis, doubling of plasma creatinine concentration or MARE.In total, 289 consecutive patients were included into the study. Urine cGMP/creatinine ratio 24 hours before CM exposure expressed as mean±SD was predictive for the need of dialysis (no dialysis: 89.77±92.85 μM/mM, n = 277; need for dialysis: 140.3±82.90 μM/mM, n = 12, p = 0.008), death (no death during follow-up: 90.60±92.50 μM/mM, n = 280; death during follow-up: 169.88±81.52 μM/mM, n = 9; p = 0.002), and the composite endpoint MARE (no MARE: 86.02±93.17 μM/mM, n = 271; MARE: 146.64±74.68 μM/mM, n = 18, p<0.001) during the follow-up of 90 days after contrast media application. cGMP/creatinine ratio stayed significantly increased at values exceeding 120 μM/mM in patients who developed MARE, required dialysis or died.Urinary cGMP/creatinine ratio ≥ 120 μM/mM before CM exposure is a promising biomarker for the need of dialysis and all-cause mortality 90 days after CM exposure in patients with preexisting renal impairment or diabetes

    Image_2_25(OH)D-but not 1,25(OH)2D–Is an independent risk factor predicting graft loss in stable kidney transplant recipients.pdf

    No full text
    BackgroundVitamin D deficiency (VDD) or vitamin D insufficiency is common in kidney transplant recipients (KTRs). The impact of VDD on clinical outcomes in KTRs remain poorly defined and the most suitable marker for assessing vitamin D nutritional status in KTRs is unknown so far.MethodsWe conducted a prospective study including 600 stable KTRs (367 men, 233 women) and a meta-analysis to pool existing evidence to determine whether 25(OH)D or 1,25(OH)2D predicted graft failure and all-cause mortality in stable KTRs.ResultsCompared with a higher 25(OH)D concentration, a low concentration of 25(OH)D was a risk factor for graft failure (HR 0.946, 95% CI 0.912−0.981, p = 0.003), whereas 1,25 (OH)2D was not associated with the study end-point graft loss (HR 0.993, 95% CI 0.977−1.009, p = 0.402). No association was found between either 25(OH)D or 1,25 (OH)2D and all-cause mortality. We furthermore conducted a meta-analysis including 8 studies regarding the association between 25(OH)D or 1,25(OH)2D and graft failure or mortality, including our study. The meta-analysis results were consistent with our study in finding that lower 25(OH)D levels were significantly associated with the risk of graft failure (OR = 1.04, 95% CI: 1.01−1.07), but not associated with mortality (OR = 1.00, 95% CI: 0.98−1.03). Lower 1,25(OH)2D levels were not associated with the risk of graft failure (OR = 1.01, 95% CI: 0.99−1.02) and mortality (OR = 1.01, 95% CI: 0.99−1.02).ConclusionBaseline 25(OH)D concentrations but not 1,25(OH)2D concentrations were independently and inversely associated with graft loss in adult KTRs.</p

    Image_1_25(OH)D-but not 1,25(OH)2D–Is an independent risk factor predicting graft loss in stable kidney transplant recipients.pdf

    No full text
    BackgroundVitamin D deficiency (VDD) or vitamin D insufficiency is common in kidney transplant recipients (KTRs). The impact of VDD on clinical outcomes in KTRs remain poorly defined and the most suitable marker for assessing vitamin D nutritional status in KTRs is unknown so far.MethodsWe conducted a prospective study including 600 stable KTRs (367 men, 233 women) and a meta-analysis to pool existing evidence to determine whether 25(OH)D or 1,25(OH)2D predicted graft failure and all-cause mortality in stable KTRs.ResultsCompared with a higher 25(OH)D concentration, a low concentration of 25(OH)D was a risk factor for graft failure (HR 0.946, 95% CI 0.912−0.981, p = 0.003), whereas 1,25 (OH)2D was not associated with the study end-point graft loss (HR 0.993, 95% CI 0.977−1.009, p = 0.402). No association was found between either 25(OH)D or 1,25 (OH)2D and all-cause mortality. We furthermore conducted a meta-analysis including 8 studies regarding the association between 25(OH)D or 1,25(OH)2D and graft failure or mortality, including our study. The meta-analysis results were consistent with our study in finding that lower 25(OH)D levels were significantly associated with the risk of graft failure (OR = 1.04, 95% CI: 1.01−1.07), but not associated with mortality (OR = 1.00, 95% CI: 0.98−1.03). Lower 1,25(OH)2D levels were not associated with the risk of graft failure (OR = 1.01, 95% CI: 0.99−1.02) and mortality (OR = 1.01, 95% CI: 0.99−1.02).ConclusionBaseline 25(OH)D concentrations but not 1,25(OH)2D concentrations were independently and inversely associated with graft loss in adult KTRs.</p
    corecore