3,659 research outputs found
Representing Structural Information of Helical Charge Distributions in Cylindrical Coordinates
Structural information in the local electric field produced by helical charge
distributions, such as dissolved DNA, is revealed in a straightforward manner
employing cylindrical coordinates. Comparison of structure factors derived in
terms of cylindrical and helical coordinates is made. A simple coordinate
transformation serves to relate the Green function in cylindrical and helical
coordinates. We also compare the electric field on the central axis of a single
helix as calculated in both systems.Comment: 11 pages in plain LaTex, no figures. Accepted for publication in PRE
March, 199
Spatio-temporal patterns driven by autocatalytic internal reaction noise
The influence that intrinsic local density fluctuations can have on solutions
of mean-field reaction-diffusion models is investigated numerically by means of
the spatial patterns arising from two species that react and diffuse in the
presence of strong internal reaction noise. The dynamics of the Gray-Scott (GS)
model with constant external source is first cast in terms of a continuum field
theory representing the corresponding master equation. We then derive a
Langevin description of the field theory and use these stochastic differential
equations in our simulations. The nature of the multiplicative noise is
specified exactly without recourse to assumptions and turns out to be of the
same order as the reaction itself, and thus cannot be treated as a small
perturbation. Many of the complex patterns obtained in the absence of noise for
the GS model are completely obliterated by these strong internal fluctuations,
but we find novel spatial patterns induced by this reaction noise in regions of
parameter space that otherwise correspond to homogeneous solutions when
fluctuations are not included.Comment: 12 pages, 18 figure
Heat kernel regularization of the effective action for stochastic reaction-diffusion equations
The presence of fluctuations and non-linear interactions can lead to scale
dependence in the parameters appearing in stochastic differential equations.
Stochastic dynamics can be formulated in terms of functional integrals. In this
paper we apply the heat kernel method to study the short distance
renormalizability of a stochastic (polynomial) reaction-diffusion equation with
real additive noise. We calculate the one-loop {\emph{effective action}} and
its ultraviolet scale dependent divergences. We show that for white noise a
polynomial reaction-diffusion equation is one-loop {\emph{finite}} in and
, and is one-loop renormalizable in and space dimensions. We
obtain the one-loop renormalization group equations and find they run with
scale only in .Comment: 21 pages, uses ReV-TeX 3.
Size Gap for Zero Temperature Black Holes in Semiclassical Gravity
We show that a gap exists in the allowed sizes of all zero temperature static
spherically symmetric black holes in semiclassical gravity when only
conformally invariant fields are present. The result holds for both charged and
uncharged black holes. By size we mean the proper area of the event horizon.
The range of sizes that do not occur depends on the numbers and types of
quantized fields that are present. We also derive some general properties that
both zero and nonzero temperature black holes have in all classical and
semiclassical metric theories of gravity.Comment: 4 pages, ReVTeX, no figure
Path integral evaluation of the one-loop effective potential in field theory of diffusion-limited reactions
The well-established effective action and effective potential framework from
the quantum field theory domain is adapted and successfully applied to
classical field theories of the Doi and Peliti type for diffusion controlled
reactions. Through a number of benchmark examples, we show that the direct
calculation of the effective potential in fixed space dimension to
one-loop order reduces to a small set of simple elementary functions,
irrespective of the microscopic details of the specific model. Thus the
technique, which allows one to obtain with little additional effort, the
potentials for a wide variety of different models, represents an important
alternative to the standard model dependent diagram-based calculations. The
renormalized effective potential, effective equations of motion and the
associated renormalization group equations are computed in spatial
dimensions for a number of single species field theories of increasing
complexity.Comment: Plain LaTEX2e, 32 pages and three figures. Submitted to Journal of
Statistical Physic
Energy Density of Non-Minimally Coupled Scalar Field Cosmologies
Scalar fields coupled to gravity via in arbitrary
Friedmann-Robertson-Walker backgrounds can be represented by an effective flat
space field theory. We derive an expression for the scalar energy density where
the effective scalar mass becomes an explicit function of and the scale
factor. The scalar quartic self-coupling gets shifted and can vanish for a
particular choice of . Gravitationally induced symmetry breaking and
de-stabilization are possible in this theory.Comment: 18 pages in standard Late
Large scale emergent properties of an autocatalytic reaction-diffusion model subject to noise
The non-equilibrium dynamic fluctuations of a stochastic version of the
Gray-Scott (GS) model are studied analytically in leading order in perturbation
theory by means of the dynamic renormalization group. There is an attracting
stable fixed point at one-loop order, and the asymptotic scaling of the
correlation functions is predicted for both spatial and temporally correlated
noise sources. New effective three-body reaction terms, not present in the
original GS model, are induced by the combined interplay of the fluctuations
and nonlinearities.Comment: 13 pages, 2 figure
Gauge Field Back-reaction on a Black Hole
The order fluctuations of gauge fields in the vicinity of a blackhole
can create a repulsive antigravity region extending out beyond the renormalized
Schwarzschild horizon. If the strength of this repulsive force increases as
higher orders in the back-reaction are included, the formation of a
wormhole-like object could occur.Comment: 17 pages, three figures available on request, in RevTe
Complex noise in diffusion-limited reactions of replicating and competing species
We derive exact Langevin-type equations governing quasispecies dynamics. The
inherent multiplicative noise has both real and imaginary parts. The numerical
simulation of the underlying complex stochastic partial differential equations
is carried out employing the Cholesky decomposition for the noise covariance
matrix. This noise produces unavoidable spatio-temporal density fluctuations
about the mean field value. In two dimensions, the fluctuations are suppressed
only when the diffusion time scale is much smaller than the amplification time
scale for the master species.Comment: 10 pages, 2 composite figure
Effective Potential of a Black Hole in Thermal Equilibrium with Quantum Fields
Expectation values of one-loop renormalized thermal equilibrium stress-energy
tensors of free conformal scalars, spin- fermions and U(1) gauge
fields on a Schwarzschild black hole background are used as sources in the
semi-classical Einstein equation. The back-reaction and new equilibrium metric
are solved for at for each spin field. The nature of the modified
black hole spacetime is revealed through calculations of the effective
potential for null and timelike orbits. Significant novel features affecting
the motions of both massive and massless test particles show up at lowest order
in , where is the renormalized black hole mass,
and is the Planck mass. Specifically, we find the tendency for
\underline{stable} circular photon orbits, an increase in the black hole
capture cross sections, and the existence of a gravitationally repulsive region
associated with the black hole which is generated from the U(1) back-reaction.
We also consider the back-reaction arising from multiple fields, which will be
useful for treating a black hole in thermal equilibrium with field ensembles
belonging to gauge theories.Comment: 25 pages (not including seven figures), VAND-TH-93-6. Typed in Latex,
uses RevTex macro
- …