1,027 research outputs found

    Single machine scheduling with controllable processing times by submodular optimization

    Get PDF
    In scheduling with controllable processing times the actual processing time of each job is to be chosen from the interval between the smallest (compressed or fully crashed) value and the largest (decompressed or uncrashed) value. In the problems under consideration, the jobs are processed on a single machine and the quality of a schedule is measured by two functions: the maximum cost (that depends on job completion times) and the total compression cost. Our main model is bicriteria and is related to determining an optimal trade-off between these two objectives. Additionally, we consider a pair of associated single criterion problems, in which one of the objective functions is bounded while the other one is to be minimized. We reduce the bicriteria problem to a series of parametric linear programs defined over the intersection of a submodular polyhedron with a box. We demonstrate that the feasible region is represented by a so-called base polyhedron and the corresponding problem can be solved by the greedy algorithm that runs two orders of magnitude faster than known previously. For each of the associated single criterion problems, we develop algorithms that deliver the optimum faster than it can be deduced from a solution to the bicriteria problem

    Maximum st-flow in directed planar graphs via shortest paths

    Full text link
    Minimum cuts have been closely related to shortest paths in planar graphs via planar duality - so long as the graphs are undirected. Even maximum flows are closely related to shortest paths for the same reason - so long as the source and the sink are on a common face. In this paper, we give a correspondence between maximum flows and shortest paths via duality in directed planar graphs with no constraints on the source and sink. We believe this a promising avenue for developing algorithms that are more practical than the current asymptotically best algorithms for maximum st-flow.Comment: 20 pages, 4 figures. Short version to be published in proceedings of IWOCA'1

    On the Complexity of Local Search for Weighted Standard Set Problems

    Full text link
    In this paper, we study the complexity of computing locally optimal solutions for weighted versions of standard set problems such as SetCover, SetPacking, and many more. For our investigation, we use the framework of PLS, as defined in Johnson et al., [JPY88]. We show that for most of these problems, computing a locally optimal solution is already PLS-complete for a simple neighborhood of size one. For the local search versions of weighted SetPacking and SetCover, we derive tight bounds for a simple neighborhood of size two. To the best of our knowledge, these are one of the very few PLS results about local search for weighted standard set problems

    Total variation denoising in l1l^1 anisotropy

    Full text link
    We aim at constructing solutions to the minimizing problem for the variant of Rudin-Osher-Fatemi denoising model with rectilinear anisotropy and to the gradient flow of its underlying anisotropic total variation functional. We consider a naturally defined class of functions piecewise constant on rectangles (PCR). This class forms a strictly dense subset of the space of functions of bounded variation with an anisotropic norm. The main result shows that if the given noisy image is a PCR function, then solutions to both considered problems also have this property. For PCR data the problem of finding the solution is reduced to a finite algorithm. We discuss some implications of this result, for instance we use it to prove that continuity is preserved by both considered problems.Comment: 34 pages, 9 figure

    Capacitated max-Batching with Interval Graph Compatibilities

    Get PDF
    We consider the problem of partitioning interval graphs into cliques of bounded size. Each interval has a weight, and the cost of a clique is the maximum weight of any interval in the clique. This natural graph problem can be interpreted as a batch scheduling problem. Solving an open question from [7, 4, 5], we show NP-hardness, even if the bound on the clique sizes is constant. Moreover, we give a PTAS based on a novel dynamic programming technique for this case.

    Approximation Algorithms for the Max-Buying Problem with Limited Supply

    Full text link
    We consider the Max-Buying Problem with Limited Supply, in which there are nn items, with CiC_i copies of each item ii, and mm bidders such that every bidder bb has valuation vibv_{ib} for item ii. The goal is to find a pricing pp and an allocation of items to bidders that maximizes the profit, where every item is allocated to at most CiC_i bidders, every bidder receives at most one item and if a bidder bb receives item ii then pi≀vibp_i \leq v_{ib}. Briest and Krysta presented a 2-approximation for this problem and Aggarwal et al. presented a 4-approximation for the Price Ladder variant where the pricing must be non-increasing (that is, p1≄p2≄⋯≄pnp_1 \geq p_2 \geq \cdots \geq p_n). We present an e/(e−1)e/(e-1)-approximation for the Max-Buying Problem with Limited Supply and, for every Δ>0\varepsilon > 0, a (2+Δ)(2+\varepsilon)-approximation for the Price Ladder variant

    A Technique for Obtaining True Approximations for kk-Center with Covering Constraints

    Full text link
    There has been a recent surge of interest in incorporating fairness aspects into classical clustering problems. Two recently introduced variants of the kk-Center problem in this spirit are Colorful kk-Center, introduced by Bandyapadhyay, Inamdar, Pai, and Varadarajan, and lottery models, such as the Fair Robust kk-Center problem introduced by Harris, Pensyl, Srinivasan, and Trinh. To address fairness aspects, these models, compared to traditional kk-Center, include additional covering constraints. Prior approximation results for these models require to relax some of the normally hard constraints, like the number of centers to be opened or the involved covering constraints, and therefore, only obtain constant-factor pseudo-approximations. In this paper, we introduce a new approach to deal with such covering constraints that leads to (true) approximations, including a 44-approximation for Colorful kk-Center with constantly many colors---settling an open question raised by Bandyapadhyay, Inamdar, Pai, and Varadarajan---and a 44-approximation for Fair Robust kk-Center, for which the existence of a (true) constant-factor approximation was also open. We complement our results by showing that if one allows an unbounded number of colors, then Colorful kk-Center admits no approximation algorithm with finite approximation guarantee, assuming that P≠NP\mathrm{P} \neq \mathrm{NP}. Moreover, under the Exponential Time Hypothesis, the problem is inapproximable if the number of colors grows faster than logarithmic in the size of the ground set

    Randomized Approximation Algorithms for Query Optimization Problems on Two Processors

    Full text link

    Packing While Traveling: Mixed Integer Programming for a Class of Nonlinear Knapsack Problems

    Full text link
    Packing and vehicle routing problems play an important role in the area of supply chain management. In this paper, we introduce a non-linear knapsack problem that occurs when packing items along a fixed route and taking into account travel time. We investigate constrained and unconstrained versions of the problem and show that both are NP-hard. In order to solve the problems, we provide a pre-processing scheme as well as exact and approximate mixed integer programming (MIP) solutions. Our experimental results show the effectiveness of the MIP solutions and in particular point out that the approximate MIP approach often leads to near optimal results within far less computation time than the exact approach
    • 

    corecore