44 research outputs found

    Ischemic Heart Disease in Chronic Hepatitis B: A Danish Nationwide Cohort Study

    Get PDF
    OBJECTIVE: Data on the risk of ischemic heart disease (IHD) in patients with chronic hepatitis B virus (CHB) are conflicting. Our objective was to address the rate of IHD in patients with CHB compared with individuals without CHB (control-persons) from the general population. STUDY DESIGN AND SETTING: We conducted a cohort study of prospectively obtained data from Danish nationwide registries. We produced cumulative incidence curves and calculated the unadjusted incidence rate ratio (IRR) of IHD in persons with and without CHB. The adjusted association between having CHB and developing IHD was examined using a cause-specific Cox regression model. RESULTS: In total, 6472 persons with CHB and 62,251 age- and sex-matched individuals from the general population were followed for 48,840 and 567,456 person-years, respectively, during which 103 (1,59%) with CHB and 1058 (1,70%) control-persons developed IHD. The crude IRR was 1.13 (95% CI: 0.91–1.39). CHB did not have a statistically significant effect on the rate of IHD after adjusting for several confounding factors (adjusted hazard ratio: 0.96, 95% CI: 0.76–1.21). CONCLUSION: In this nationwide cohort study, we did not find any difference between rate of IHD in persons with CHB in comparison with the general population

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore