18 research outputs found

    Fresh shallow valleys in the Martian midlatitudes as features formed by meltwater flow beneath ice

    Get PDF
    Significant numbers of valleys have been identified in the Martian midlatitudes (30–60°N/S), spatially associated with extant or recent ice accumulations. Many of these valleys date to the Amazonian, but their formation during these cold, dry epochs is problematic. In this study, we look in detail at the form, distribution, and quantitative geomorphology of two suites of these valleys and their associated landforms in order to better constrain the processes of their formation. Since the valleys themselves are so young and thus well preserved, uniquely, we can constrain valley widths and courses and link these to the topography from the Mars Orbiter Laser Altimeter and High-Resolution Stereo Camera data. We show that the valleys are both qualitatively and quantitatively very similar, despite their being >5000 km apart in different hemispheres and around 7 km apart in elevation. Buffered crater counting indicates that the ages of these networks are statistically identical, probably forming during the Late Amazonian, ~100 Ma. In both localities, at least tens of valleys cross local drainage divides, apparently flowing uphill. We interpret these uphill reaches to be characteristic of flow occurring beneath a now absent, relatively thin (order 101–102 m), regionally extensive ice cover. Ridges and mounds occasionally found at the foot of these valley systems are analogous to eskers and aufeis-like refreezing features. On the basis of their interaction with these aufeis-like mounds, we suggest that this suite of landforms may have formed in a single, short episode (perhaps order of days), probably forced by global climate change

    Modeling the shape and evolution of normal-fault facets

    Get PDF
    Facets formed along the footwalls of active normal-fault blocks display a variety of longitudinal profile forms, with variations in gradient, shape, degree of soil cover, and presence or absence of a slope break at the fault trace. We show that a two-dimensional, process-oriented cellular automaton model of facet profile evolution can account for the observed morphologic diversity. The model uses two dimensionless parameters to represent fault slip, progressive rock weathering, and downslope colluvial-soil transport driven by gravity and stochastic disturbance events. The parameters represent rock weathering and soil disturbance rates, respectively, scaled by fault slip rate; both can be derived from field-estimated rate coefficients. In the model's transport-limited regime, slope gradient depends on the ratio of disturbance to slip rate, with a maximum that represents the angle of repose for colluvium. In this regime, facet evolution is consistent with nonlinear diffusion models of soil-mantled hillslope evolution. Under the weathering-limited regime, bedrock becomes partly exposed but microtopography helps trap some colluvium even when facet gradient exceeds the threshold angle. Whereas the model predicts a continuous gradient from footwall to colluvial wedge under transport-limited behavior, fully weathering-limited facets tend to develop a slope break between footwall and basal colluvium as a result of reduced transport efficiency on the rocky footwall slope. To the extent that the model provides a reasonable analogy for natural facets, its behavior suggests that facet profile morphology can provide useful constraints on relative potential rates of rock weathering, soil disturbance, and fault slip

    Sedimentology and climatic environment of alluvial fans in the Martian Saheki Crater and a comparison with terrestrial fans in the Atacama Desert

    Get PDF
    The deflated surfaces of the alluvial fans in Saheki crater reveal the most detailed record of fan stratigraphy and evolution found, to date, on Mars. During deposition of at least the uppermost 100 m of fan deposits, discharges from the source basin consisted of channelized flows transporting sediment (which we infer to be primarily sand- and gravel-sized) as bedload coupled with extensive overbank mud-rich flows depositing planar beds of sand-sized or finer sediment. Flow events are inferred to have been of modest magnitude (probably less than ~60 m3/s), of short duration, and probably occupied only a few distributaries during any individual flow event. Occasional channel avulsions resulted in the distribution of sediment across the entire fan. A comparison with fine-grained alluvial fans in Chile’s Atacama Desert provides insights into the processes responsible for constructing the Saheki crater fans: sediment is deposited by channelized flows (transporting sand through boulder-sized material) and overbank mudflows (sand size and finer) and wind erosion leaves channels expressed in inverted topographic relief. The most likely source of water was snowmelt released after annual or epochal accumulation of snow in the headwater source basin on the interior crater rim during the Hesperian to Amazonian periods. We infer the Saheki fans to have been constructed by many hundreds of separate flow events, and accumulation of the necessary snow and release of meltwater may have required favorable orbital configurations or transient global warming

    Off-fault deformation rate along the southern San Andreas Fault at Mecca Hills inferred from landscape modeling of curved drainages

    Get PDF
    Quantifying off-fault deformation (OFD) rates on geomorphic timescales (10^2-10^5 yr) along strike-slip faults is critical for resolving discrepancies between geologic and geodetic slip-rate estimates, improving knowledge of seismic hazard, and understanding the influence of tectonic motion on landscapes. Quantifying OFD over these timescales is challenging without displacement markers such as offset terraces or geologic contacts. We present a landscape evolution model coupled with distributed lateral tectonic shear to show how drainage basins sheared by lateral tectonic motion can reveal OFD rates. The model shows that OFD rate can control the orientation of drainage basin topography: the faster the OFD rate, the greater the deflection of drainage basins towards a fault-parallel orientation. We apply the model to the southern San Andreas Fault near the Mecca Hills, where drainages basins change in orientation with proximity to the fault. Comparison of observed and modeled topography suggests that the OFD rate in the Mecca Hills follows an exponential-like spatial pattern with a maximum rate nearest the fault of 3.5 ± 1.5 mm/yr, which decays to approximately zero at ~600 m distance from the fault. This rate is applicable since the initiation of differential rock uplift in the Mecca Hills at approximately 760 ka. Our results suggest that OFD in this 800 m study area may be as high as 10% of total plate motion. This example demonstrates that curved drainage basins may be used to estimate OFD rates along strike slip faults

    On transient semi‐arid ecosystem dynamics using Landlab: vegetation shifts, topographic refugia, and response to climate

    Get PDF
    Projecting how arid and semi‐arid ecosystems respond to global change requires the integration of a wide array of analytical and numerical models to address different aspects of complex ecosystems. We used the Landlab earth surface modeling toolkit (Hobley et al., 2017, https://doi.org/10.5194/esurf-5-21-2017) to couple several ecohydrologic and vegetation dynamics processes to investigate the controls of exogenous drivers (climate, topography, fires, and grazing) and endogenous grass‐fire feedback mechanisms. Aspect‐controlled ecosystems and historical woody plant encroachment (WPE) narratives in central New Mexico, USA are used to construct simulations. Modeled ecosystem response to climatic wetness (i.e., higher precipitation, lower potential evapotranspiration) on topography follows the Boyko's “geo‐ecological law of distribution.” Shrubs occupy cooler pole‐facing slopes in the dry end of their ecoclimatic range (Mean Annual Precipitation, MAP ≤ 200 mm), and shift toward warmer equator‐facing slopes as regional moisture increases (MAP > 250 mm). Trees begin to occupy pole‐facing slopes when MAP > 200 mm, and gradually move to valleys. Pole‐facing slopes increase species diversity at the landscape scale by hosting relict populations during dry periods. WPE observed in the region since the middle 1800s is predicted as a three‐phase phenomenon. Phase II, rapid expansion, requires the removal of the positive grass‐fire feedback by livestock grazing or fire suppression. Regime shifts from grassland to shrubland are marked by critical thresholds that involve grass cover remaining below 40%, shrub cover increasing to 10%–20% range, and the grass connectivity, Cg, remaining below 0.15. A critical transition to shrubland is predicted when grazing pressure is not removed before shrub cover attains 60%
    corecore