2,670 research outputs found

    Black hole feedback in a multiphase interstellar medium

    Full text link
    Ultrafast outflows (UFOs) from supermassive black holes (SMBHs) are thought to regulate the growth of SMBHs and host galaxies, resulting in a number of observational correlations. We present high-resolution numerical simulations of the impact of a thermalized UFO on the ambient gas in the inner part of the host galaxy. Our results depend strongly on whether the gas is homogeneous or clumpy. In the former case all of the ambient gas is driven outward rapidly as expected based on commonly used energy budget arguments, while in the latter the flows of mass and energy decouple. Carrying most of the energy, the shocked UFO escapes from the bulge via paths of least resistance, taking with it only the low-density phase of the host. Most of the mass is however in the high-density phase, and is affected by the UFO much less strongly, and may even continue to flow inwards. We suggest that the UFO energy leakage through the pores in the multiphase interstellar medium (ISM) may explain why observed SMBHs are so massive despite their overwhelmingly large energy production rates. The multiphase ISM effects reported here are probably under-resolved in cosmological simulations but may be included in prescriptions for active galactic nuclei feedback in future simulations and in semi-analytical models.Comment: 12 pages, 8 figures, accepted in MNRA

    AGN Feedback models: Correlations with star formation and observational implications of time evolution

    Full text link
    We examine the correlation between the star formation rate (SFR) and black hole accretion rate (BHAR) across a suite of different AGN feedback models, using the time evolution of a merger simulation. By considering three different stages of evolution, and a distinction between the nuclear and outer regions of star formation, we consider 63 different cases. Despite many of the feedback models fitting the M-\sigma\ relationship well, there are often distinct differences in the SFR-BHAR correlations, with close to linear trends only being present after the merger. Some of the models also show evolution in the SFR-BHAR parameter space that is at times directly across the long-term averaged SFR-BHAR correlation. This suggests that the observational SFR-BHAR correlation found for ensembles of galaxies is an approximate statistical trend, as suggested by Hickox et al. Decomposing the SFR into nuclear and outer components also highlights notable differences between models and there is only modest agreement with observational studies examining this in Seyfert galaxies. For the fraction of the black hole mass growth from the merger event relative to the final black hole mass, we find as much as a factor of three variation among models. This also translates into a similar variation in the post-starburst black hole mass growth. Overall, we find that while qualitative features are often similar amongst models, precise quantitative analysis shows there can be quite distinct differences.Comment: Accepted to MNRAS. Comments welcom

    Growing galaxies via superbubble-driven accretion flows

    Get PDF
    We use a suite of cooling halo simulations to study a new mechanism for rapid accretion of hot halo gas on to star-forming galaxies. Correlated supernova (SN) events create converging ‘superbubbles' in the halo gas. Where these collide, the density increases, driving cooling filaments of low-metallicity gas that feed the disc. At our current numerical resolution (∼20pc; mgas = 4 × 104 M⊙) we are only able to resolve the most dramatic events; however, as we increase the numerical resolution, we find that the filaments persist for longer, driving continued late-time star formation. This suggests that SN-driven accretion could act as an efficient mechanism for extracting cold gas from the hot halo, driving late-time star formation in disc galaxies. We show that such filament feeding leads to a peak star formation rate of ∼3 M⊙ yr−1, consistent with estimates for the Milky Way (MW). The filaments we resolve extend to ∼50 kpc, reaching column densities of N ∼ 1018cm−2. We show that such structures can plausibly explain the broad dispersion in Mgii absorption seen along sightlines to quasars. Our results suggest a dual role for stellar feedback in galaxy formation, suppressing hot-mode accretion while promoting cold-mode accretion along filaments. Finally, since the filamentary gas has higher angular momentum than that coming from hot-mode accretion, we show that this leads to the formation of substantially larger gas disc

    Feeding supermassive black holes through supersonic turbulence and ballistic accretion

    Get PDF
    It has long been recognized that the main obstacle to the accretion of gas on to supermassive black holes (SMBHs) is a large specific angular momentum. It is feared that the gas settles in a large-scale disc, and that accretion would then proceed too inefficiently to explain the masses of the observed SMBHs. Here we point out that, while the mean angular momentum in the bulge is very likely to be large, the deviations from the mean can also be significant. Indeed, cosmological simulations show that velocity and angular momentum fields of gas flows on to galaxies are very complex. Furthermore, inside bulges the gas velocity distribution can be further randomized by the velocity kicks due to feedback from star formation. We perform hydrodynamical simulations of gaseous rotating shells infalling on to an SMBH, attempting to quantify the importance of velocity dispersion in the gas at relatively large distances from the black hole. We implement this dispersion by means of a supersonic turbulent velocity spectrum. We find that, while in the purely rotating case the circularization process leads to efficient mixing of gases with different angular momenta, resulting in a low accretion rate, the inclusion of turbulence increases this accretion rate by up to several orders of magnitude. We show that this can be understood based on the notion of ‘ballistic' accretion, whereby dense filaments, created by convergent turbulent flows, travel through the ambient gas largely unaffected by hydrodynamical drag. This prevents the efficient gas mixing that was found in the simulations without turbulence, and allows a fraction of gas to impact the innermost boundary of the simulations directly. Using the ballistic approximation, we derive a simple analytical formula that captures the numerical results to within a factor of a few. Rescaling our results to astrophysical bulges, we argue that this ‘ballistic' mode of accretion could provide the SMBHs with sufficient fuel without the need to channel the gas via large-scale discs or bars. We therefore argue that star formation in bulges can be a strong catalyst for SMBH accretio

    Thermal instabilities in cooling galactic coronae: fuelling star formation in galactic discs

    Full text link
    We investigate the means by which cold gas can accrete onto Milky Way mass galaxies from a hot corona of gas, using a new smoothed particle hydrodynamics code, 'SPHS'. We find that the 'cold clumps' seen in many classic SPH simulations in the literature are not present in our SPHS simulations. Instead, cold gas condenses from the halo along filaments that form at the intersection of supernovae-driven bubbles from previous phases of star formation. This positive feedback feeds cold gas to the galactic disc directly, fuelling further star formation. The resulting galaxies in the SPH and SPHS simulations differ greatly in their morphology, gas phase diagrams, and stellar content. We show that the classic SPH cold clumps owe to a numerical thermal instability caused by an inability for cold gas to mix in the hot halo. The improved treatment of mixing in SPHS suppresses this instability leading to a dramatically different physical outcome. In our highest resolution SPHS simulation, we find that the cold filaments break up into bound clumps that form stars. The filaments are overdense by a factor of 10-100 compared to the surrounding gas, suggesting that the fragmentation results from a physical non-linear instability driven by the overdensity. This 'fragmenting filament' mode of disc growth has important implications for galaxy formation, in particular the role of star formation in bringing cold gas into disc galaxies.Comment: 20 pages, 12 figures. Submitted to MNRAS. A better formatted version of the PDF is available at http://www.astro.phys.ethz.ch/~ahobbs/papers/coolinghalospaper.pdf . Movies (highly recommended viewing) available at http://www.phys.ethz.ch/~ahobbs/movies.htm
    • …
    corecore