3,489 research outputs found

    Evolution of structure of SiO2 nanoparticles upon cooling from the melt

    Get PDF
    Evolution of structure of spherical SiO2 nanoparticles upon cooling from the melt has been investigated via molecular-dynamics (MD) simulations under non-periodic boundary conditions (NPBC). We use the pair interatomic potentials which have weak Coulomb interaction and Morse type short-range interaction. The change in structure of SiO2 nanoparticles upon cooling process has been studied through the partial radial distribution functions (PRDFs), coordination number and bond-angle distributions at different temperatures. The core and surface structures of nanoparticles have been studied in details. Our results show significant temperature dependence of structure of nanoparticles. Moreover, temperature dependence of concentration of structural defects in nanoparticles upon cooling from the melt toward glassy state has been found and discussed.Comment: 12 pages, 6 figure

    Shapes of hydrophobic thick membranes

    Full text link
    We introduce and study the behavior of a tethered membrane of non-zero thickness embedded in three dimensions subject to an effective self-attraction induced by hydrophobicity arising from the tendency to minimize the area exposed to a solvent. The phase behavior and the nature of the folded conformations are found to be quite distinct in the small and large solvent size regimes. We demonstrate spontaneous symmetry-breaking with the membrane folding along a preferential axis, when the solvent molecules are small compared to the membrane thickness. For large solvent molecule size, a local crinkling mechanism effectively shields the membrane from the solvent, even in relatively flat conformations. We discuss the binding/unbinding transition of a membrane to a wall that serves to shield the membrane from the solvent.Comment: 7 pages, 5 figures, to appear in EP

    Overview of charmonium decays and production from Non-Relativistic QCD

    Full text link
    I briefly review Non-Relativistic QCD and related effective theories, and discuss applications to heavy quarkonium decay, and production in electron-positron colliders.Comment: 8 pages, Invited talk at Charm 2010, Oct. 21-24, IHEP, Beijin

    An efficient hidden Markov model training scheme for anomaly intrusion detection of server applications based on system calls

    Get PDF
    Recently hidden Markov model (HMM) has been proved to be a good tool to model normal behaviours of privileged processes for anomaly intrusion detection based on system calls. However, one major problem with this approach is that it demands excessive computing resources in the HMM training process, which makes it inefficient for practical intrusion detection systems. In this paper a simple and efficient HMM training scheme is proposed by the innovative integration of multiple-observations training and incremental HMM training. The proposed scheme first divides the long observation sequence into multiple subsets of sequences. Next each subset of data is used to infer one sub-model, and then this sub-model is incrementally merged into the final HMM model. Our experimental results show that our HMM training scheme can reduce the training time by about 60% compared to that of the conventional batch training. The results also show that our HMM-based detection model is able to detect all denial-of-service attacks embedded in testing traces

    Improved matching criterion for frame rate upconversion with trilateral filtering

    Get PDF
    Frame rate upconversion (FRUC) is an important post-processing technique to enhance the visual quality of low frame rate video. A major, recent advance in this area is FRUC based on trilateral filtering which novelty mainly derives from the combination of an edge-based motion estimation block matching criterion with the trilateral filter. However, there is still room for improvement, notably towards reducing the size of the uncovered regions in the initial estimated frame, this means the estimated frame before trilateral filtering. In this context, proposed is an improved motion estimation block matching criterion where a combined luminance and edge error metric is weighted according to the motion vector components, notably to regularise the motion field. Experimental results confirm that significant improvements are achieved for the final interpolated frames, reaching PSNR gains up to 2.73 dB, on average, regarding recent alternative solutions, for video content with varied motion characteristics
    • …
    corecore