Evolution of structure of spherical SiO2 nanoparticles upon cooling from the
melt has been investigated via molecular-dynamics (MD) simulations under
non-periodic boundary conditions (NPBC). We use the pair interatomic potentials
which have weak Coulomb interaction and Morse type short-range interaction. The
change in structure of SiO2 nanoparticles upon cooling process has been studied
through the partial radial distribution functions (PRDFs), coordination number
and bond-angle distributions at different temperatures. The core and surface
structures of nanoparticles have been studied in details. Our results show
significant temperature dependence of structure of nanoparticles. Moreover,
temperature dependence of concentration of structural defects in nanoparticles
upon cooling from the melt toward glassy state has been found and discussed.Comment: 12 pages, 6 figure