
An Efficient Hidden Markov Model Training
Scheme for Anomaly Intrusion Detection of
Server Applications Based on System Calls

X. D. Hoang and J. Hu
{ xhoang, jiankun) @cs.rmit.edu.au

School of Computer Science and Information Technology
RMlT University, Melbourne, Victoria 3000, Australia

Abstract ~ Recently hidden Markov model (HMM) has been
proved to he a good twl to model normal behaviours of
privileged processes for anomaly intrusion detection based on
system calls. However, one major problem with this approach is
that it demands excessive computing resources in the HMM
training process, which makes it inefficient for practical
intrusion detection systems. In this paper a simple and efficient
HMM training scheme is proposed by the innovative integration
of multiplwhservations training and incremental HMM
training. The proposed scheme first divides the long observation
sequence into multiple subsets of sequences. Next each subset of
data is used to infer one sub-model, and then this sub-model is
incrementally merged into the final HMM model. Our
experimental results show that our HMM training scheme can
reduce the training time by about 60% compared to that of the
conventional hatch training. The results also show that our
HMM-based detection model is able to detect all denial-of-
service attacks embedded in testing traces.

1. INTRODUCTION

Anomaly intrusion detection is one of two major intrusion
detection techniques namely misuse detection and anomaly
detection [4]. Generally, an anomaly intrusion detection
scheme constructs models of subject behaviour, and considers
any significant deviation from normal behaviours as part of an
attack. Anomaly intrusion detection has the potential to detect
unknown attacks because no prior knowledge about specific
intrusions is required [4].

Intrusion detection can he considered as a data analysis
process [4]. This is particularly true in anomaly intrusion
detection where intrusion detection systems collect and
process large volume of raw data from various sources such as
network traffic and activity information of users and
programs. Data processing techniques such as data mining,
machine learning and statistics have been commonly used in
intrusion detection systems.

In 1996, Forrest and her colleague [I] are the first researchers
who proposed the idea of using programs' system calls to
operating system kernel to detect the anomalous activities of
programs. It is empirically proved that short sequences of
system calls produced by the execution of some Unix
privileged processes such as sendmail and named are a good

discriminator between the normal and abnormal operating
characteristics. They constructed a simple detection scheme
that consists of two phases: (I) building a list of unique short
sequences of a program's system calls in normal operation as
normal database and (2) testing input short sequences against
the normal darabase to find the anomalies. If a mismatch is
found, the short sequence is considered to be anomalous. The
idea has been extensively extended in their later work [Z] with
wide range of experiments on various Unix programs under
synthetic and real working environment. The experimental
results have also confirmed that short sequences of system
calls are stable and consistent during program's normal
activities. This method is simple and efficient because it
requires only one pass through the training data to build up
the normal database. However, the method may generate a
high number of false alarms because it is impossible to build a
complete database covering all scenarios.

Warrender et a1 [3] continued the work along this line and
investigated various data processing methods through
extensive experiments. They used the enumerating method
[I]. frequency based method, data mining, and hidden Markov
model to build up the detection models from the system call
traces. The experimental results have shown that hidden
Markov model can generate the most accurate results on
average. The major drawback of HMM approach is that
HMM training demands excessive computational resources.

Several other HMM based anomaly intrusion detection
approaches can he found in [5] and [6]. In [SI, Qiao er a1 first
built up a HMM from the input system call trace, and then
used this HMM to transform the input sequences of system
calls into the sequences of hidden states. Finally they applied
the enumerating method [I] on the hidden state sequences to
build the normal database to detect anomalous sequences.
This transformation, however, cannot solve the problem of
incomplete database since the mapping between the input
system calls and output states is one to one. A complete
database of hidden states cannot he built from an incomplete
input data set.

In 161, Hoang et a1 have proposed a "Multi-layer model" to
address the issue of incompleteness of normal database. The
proposed model integrates the enumerating method [11,

0-7803-8781-x/o4/$20.00 0 2004 IEEE 470

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 22:08 from IEEE Xplore. Restrictions apply.

frequency based method, and HMM into single hybrid
detection system so that it can alleviate the problem of
incompleteness of normal darabase and also increase the
detection accuracy. This method comprises of two phases: the
training phase and testing phase. In the training phase, a
normal darabase and a HMM are consuucted from the system
call traces of a program's normal operation. In the testing
phrase, the input sequences are first compared against the
normal database; if a mismatch is found the suspected
sequence is then passed to the HMM for further verification.
By using such two verification layers on suspicious
sequences, this method is reportedly able to reduce the false
a l m rate and the necessary amount of training data
effectively. However it demands very high computational cost
for HMM training, especially with large-size HMM and long
system call traces which makes it infeasible for online
intrusion detection.

The HMM training using multiple-observation sequences
algorithm (HMMMOSA) [9] has been successfully applied in
speech recognition. The idea of using multiple-observation
sequences is useful for reducing demands on training time and
memory resources. In order to solve the aforementioned
HMM training problem for the anomaly intrusion detection,
we introduce and modify the HMMMOSA scheme in this
paper. Our new HMM training scheme first divides the long
training sequence into a number of subsets of sequences.
Next, each subset of data is used to train one sub-model and
then the sub-model is incrementally merged into the final
model. This step is different from the HMMMOSA scheme
where the training of all sub-models is completed first and
then they are merged into final model. With this modification,
the HMM training scheme has become incremental. Therefore
it can further reduce the resource demands of the
HMMMOSA scheme, which makes it suitable for online
intrusion detection. Our experiments on the sendmail and
inetd data [I21 show that our HMM training scheme can
reduce the training time and memory requirements
significantly.

The rest of the paper is organized as follows: Part 2 first
provides a brief introduction to the hidden Markov model.
Then we describe HMM modelling of normal behaviour of
programs. Pan 3 illustrates the proposed HMM training
scheme for anomaly intrusion detection. Part 4 presents
experimental results and analysis and part 5 is our conclusion.

2. PRELIMINARY

2.1 Hidden Markov Model

Hidden Markov Model (HMM) is a double embedded
stochastic process with two hierarchy levels. The upper level
is a Markov process, in which the states are not observable.
Observation is a probabilistic function of the upper level
Markov states. Different Markov states will have different
observation functions.

HMMs are very powerful modelling tools although they are
computationally expensive [7]. HMMs have been widely used
in DNA sequence modelling, speech recognition and pattern
recognition. For convenience, we use the same HMM
notations as that in [8]. A HMM has the following elements: . . .
. .
.
.
.
.

N number of states in the model
M: number of distinct observation symbols per states
T: length of observation sequence, i.e. the number of
symbols observed
i, : state in which we are in at time t
V = { v , , v2, ... , v M) : the discrete set of possible
observation symbols
n = (E ;] , n; = P(i, = i) : the probability of being in
state i at r = 1
A = (au), a , = P(i,+, =j, i, = i): the probability of
being in state j at time r+l given that we were in state
i at time r.
B = { b j (k J] , b,(kJ = P(vk at r I i, = j) : the probability
of being observing symbol vk given that we are state j .
0 = {O,, 02, ... , O,, ... , Or): observation sequence;
0, denotes observation symbol observed at timer.

And 1 = {A, B, n) will be used as compact notation to denote
an HMM.

2.2 Building HMM to Model Program's Normal Behaviour

We consider the system call trace of a program produced in
its execution as the observation sequence and each system call
in the trace as one observation symbol in terms of HMM
notations. The first step in building HMM is the selection of
the HMM size. The number of unique system calls used in the
program's trace is defined as the number of distinct
observation symbols M. The selection of number of states is
based on the number of unique system calls used by program
in the trace [3]. In our specific HMM models we choose the
number of states N equal to the number of distinct observation
symbols M. Specifically, we select N=M=23 for sendmail
program (stide data set [IZ]) and N=M=35 for inerd'program.
We choose our HMM as ergodic model [7] in which states are
fully connected, and transitions are allowed from one state to
any other states.

Our HMM based intrusion detection scheme consists of two
phases and is presented in Fig 1. In the training phase, the
system call data are first transformed to HMM observation
sequence. Next the HMM is inferred from the observation
sequence. In the testing phase, the system call data are first
transformed to HMM short sequences, and then the HMM is
used to compute the probability of each test short sequence in
order to determine if it is normal or anomalous. A pre-defined
probability threshold is used in the testing process.

47 I

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 22:08 from IEEE Xplore. Restrictions apply.

-
HMM Training a
€3

Testing 0
Normal or anomalous

sequence?

Figure 1. HMM training and testing far anomaly
intrusion detection based on system calls

2.3 HMM Batch Training Algorithm

We use the well-known Baum-Welch algorithm [7] to train
our HMM sub-models. The HMM training using Baum-
Welch algorithm is considered as batch training because it
allows only one Observation sequence. Given the observation
sequence
0 = IO,, Oz, _.., O r) , the algorithm estimates HMM model’s
parameters 1 = (A, B, x) . to maximize P (0 I 1). The Baum-
Welch algorithm can be described in brief as follows [7]:
1. Let initial model be lo
2. Compute new model 1 based on lo and observation

sequence 0
3. If log(P(0I 1)) - log(P(0I lo))< DELTA go to step 5
4. Else set lo - 1, and go to step 2
5. stop
where DELTA is a pre-defined threshold value of the natural
logarithm of the probability.

3. PROPOSED HMM INCREMENTAL
TRAINING SCHEME

3.1 Data Sets

We use the “inetd” and “sride” data sets given in [121 for our
experiments. The procedures of generating and collecting
these traces are described in [I], [2] and [3]. Each trace is a
list of system calls produced by processes of a program during
its execution. We select the live sendmail and inetd data
collected at the University of New Mexico (UNM) to use in
our experiments. The data include:

Normal traces: traces collected during the program’s
normal activities including sendmail daemon traces
and sendmail‘s sub-processes. The sendmail data
consist of 13,276 traces with the total of 15,631,952
system calls. The inetd data include a single trace

with 541 system calls. These traces are used to build
the hidden Markov models.
Abnormal traces: traces come from a program’s
abnormal runs that generated by intrusion tools for
some known intrusions. Specific anomaly traces used
include 105 traces of a denial-of-service attack on
sendmail and a single trace of a denial-of-service
attack on inerd.

3.2 HMM Incremental Training from Multiple Observarion
Sequences

Gotoh et all [IO] proposed efficient HMM training schemes
using incremental ML and MAP estimation algorithms for
speech recognition. The HMM incremental training has the
advantage of faster convergence than that of traditional batch
training. However, their algorithms only hold when the
subsets of training data are independent. In our training data
set, the system calls are in interactive relations and condition
of independent subsets does not hold. Davis and other authors
[9] proposed a simple method to learn HMM from multiple
observation sequences (HMMMOSA). in their approach, first
the set of sub-sequences are used to learn a set of sub-models
independently. Next, when the learning of all sub-models is
complete, the sub-models are merged together based on
weights to produce the final HMM. No constraint of
independent subsets is required in this method.

In our approach, we modify the HMMMOSA scheme [9] to
make it become incremental. Our new HMM training scheme
first divides the long training sequence into a number of
subsets of sequences. Next, each subset of data is used to train
one sub-model and then the sub-model is incrementally
merged into the final model. The training scheme can he
described in the following steps:
1 .

2.

3.

4.
5.

Divide single observation sequence 0 into K
sub-sequences (OilJ, 0,~). ..., OiK,].
Initialise the HMM final model 1 - 0 (empty
model).
Take a sub-sequence Oii, to train sub-model A,, using
HMM batch training algorithm described in section 2,
sub-section 2.3.
Incrementally merge APJ into final model 1.
Repeat steps 3 and 4 for all sub-sequences.

A graphical presentation of our scheme is shown in Fig 2 in
which hk,’a”’ is the final HMM model at k observation
sequences.

The HMM parameters in the incremental merging step of the
sub-model A,, and the final HMM 1 are calculated as follows:

a,i = wk* ai?’+ w * a,

ni=wk*n,’k’+ W * &

-
-
b ,j = wi * b,” + w * b,
-

0-7803-8783-X/04/$20.00 0 2004 iEEE 412

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 22:08 from IEEE Xplore. Restrictions apply.

where wk = I I P(OfkjI&,), P(O,k,l&) is the probability to
generate sub-sequence 0 1 from model Ax, and
w = 1 / P(O,,,, Op,, Ofk.,,IIJ, P(O,, , O,Z,, O~k.l l I IJ is the
probability to generate sub-sequences { O,,,, 0,2,, Occ,,) from
model 1. ++- hd"' &kyu' z

O(KI

Figure 2. Incremental HMM Training
from multiple sub-sequences

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Experiment Design and Results

We have conducted several experiments on the sendmnil and
inerd data sets described in section 3, sub-section 3.1. The
HMM training DELTA threshold is 0. I . All HMM sub-models
have the same size as the size of the final HMM. First, we
measure the efficiency of our HMM incremental training
scheme against the traditional HMM batch training in terms of
training time and memory requirements. Next, we test our
HMM based detection models on two denial-ofservice
(DOS) attacks on sendmail and inerd. In these experiments we
use HMM models to compute the logarithm of the
probabilities (fog(P)) of test sequences, and we consider these
values as anomaly signals. The length of short sequences used
is 20 system calls.

Fig. 3 shows the relation between the HMM training time and
the number of sub-sequences in our scheme. The sendmail
data set is used in this experiment with the total length of
1,000,000 system calls. The traditional HMM batch training is
shown in the figure with sub-sequence number of I .

Fig. 4 shows log(P) of length-20 sequences in trace produced
by a denial-of-service attack on the inetd program. The,DOS
intrusion embedded in inerd trace is clearly detected by the
anomalous signal of the sequences between 13 and 30.

Fig. 5 shows log(P) of length-20 sequences in trace produced
by a denial-of-service attack on the sendmaif program. The
sendmaif DOS intrusion is also clearly detected by the
anomalous signal of the sequences between the start of the
trace and sequence 2500, and between sequence 9000 and the
end of the trace.

-batch training
50.00 7

- B 20.00
c - 15.00 e
I- 10.00

5.00
0.00

1 10 20 30 40 50

Number of sub-seqwnces

.- ~ ~ ~~~~~~ ~~~~~.~~~E .~~
multiple sequences. The total length of all sub-sequences is
1.000.000 system calls. When the number of sub-sequences
is I it is the traditional HMM batch Iraining.

0 ,
-20
-40

-140

-160
- % G w - * . - w - w

Sequence W m k r

Figure 4. Log(P) of sequences a i trace produced by a -. -

-20 4

-60 -50 1
L

Sequence Number

Figure 5. Lug(P) u i sequences uf trace produced by a
denial-of-service attack on .sendrwil.

473

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 22:08 from IEEE Xplore. Restrictions apply.

4.2 Discussion

Table I shows the HMM training time of batch training mode
(training with single sequence) and our scheme. It is clear that
our training scheme is much more efficient than the batch
mode in all number of sub-sequences tested. On average, our
scheme can reduce about 60% training time compare to that
of batch training. The training time of HMMs in our scheme
depends on the number of sub-sequences. Generally, the
training time decreases when the number of sub-sequences
increases. However, the length of sub-sequences should not he
too small because it may lead to the over-fitting of HMM
parameters. In our experiment, we define the minimum length
of the sub-sequence based on the size of HMM model.

TABLE I . RLLIT~ON BETWEEN HMM WCRXMLNTAL

'IRAININGTIML "THE N"h,(BLKOII"B- SIOIILNCLS

sub-sequences
1 Nwberof I Traininetime I Inconmarison to I

(mi;) I batch mode (%I
I (batch mode) I 43.33

I 10 I 16.67 I 38.46% 1
100.00%

I 20 I 14.98 I 34.58% 1

40

I 30 1 14.43 I 33.31% I
13.32 30.73%

50 15.57

As the memory requirements for HMM training are in the
complexity of O(2NT) [3], where N is number of hidden states
and T is the length of the training sequence, our HMM
training scheme uses shorter training sequence and hence,
demands less system memory than that of batch training.

In addition, a significant reduction of the training time and the
incremental estimation of HMM parameters make it feasible
for our scheme to be used in online HMM training for real-
time intrusion detection in which the working HMM model is
updated dynamically from on-going data.

Fig. 4 and 5 clearly show that our HMM based detection
model is able to detect all denial-of-service attacks on server
applications embedded in testing data such as sendmail and
inetd. The log(PJ values of anomalous sequences are
significantly smaller than that of normal sequences.

5. CONCLUSION

In this paper, a HMM incremental training scheme from
multiple observation sequences for anomaly intrusion
detection has been presented. Our experimental results show
that our HMM training scheme can save up to 60% training
time compared to batch training. The scheme is very
promising for use in the online HMM training for real-time
intrusion detection.

35.92%

Open Issues

The initial values of HMM parameters in the training are
sensitive factors to the convergence rate. In this paper we
simply adopted the popular approach of using random valueS
for HMM initial model. Searching for the optimal HMM
initial values will be an interesting research question.

6. REFERENCES
Forrest S., Hofmeyr S. A., Somayaji A., and Longstaff T. A.,
"A sense of self for Unix processes". Proceedings of I996 IEEE
Symposium on Computer Security and Privacy, 1996.
Forrest S., Hofmeyr S. A., and Somdyaji A., "Intrusion
detection using sequences of system calls". Journol of
C o m p u t e r s e c u r i r ~ , ~ ~ ~ . 6, pp. 151-180, 1998.
Warrender C., Forrest S., and Perlmutter B., "Detecting
intrusions using system calls: Alternative data models".
Proceedings of the 1999 IEEE Computer Society Sympo-sium
on Research in Security and Privacy (Berkeley, CA, May).
IEEE Computer Society Press, Los Alamitos, CA, pages 133-
145, 1999.
Lee W., and Stolfo S. I., "A Framework for Constructing
Features and Models for Intrusion Detection Systems". ACM
Transactions on Informarion ond System Security, Vol. 3. No.
4, pages 227-261, November 2000.
Qiao Y., Xin X. W., Bin Y., and Ge S., "Anomaly intrusion
detection method based on HMM. IEEE Electronic Lelters
Online No: 20020467, 2002.
Homg X. D., Hu J. and Bertok P., "A multi-layer model for
anomaly intrusion detection using program sequences of system
calls". Internarional Conference on Network - ICON2003,
pages 531-536, September 2003, Sydney, Australia.
Rabiner L. R., "A tutorial on hidden Markov model and
selected applications in speech recognition", in Proceedings of
IEEE, Vol. 77, No. 2, February 1989.
Dugdd R., and U. B. Desai, "A tutorial on Hidden Mmkov
Models," Technical report No.: SPANN-96.1, May 1996.
Davis R. I. A. and Lovell B. C., "Improved Estimation of
Hidden Markov Model Parameters from Multiple Observation
Sequences", in Inrernarional Conference on Parrenr
Recognition, pages 168-171, Quebec City, Canada, August
7nn2

[IO] Gotoh Y., Hochherg M. M., and Silver" H. F., "Efficient
Training Algorithms for HMMs Using Incremental Estimdtion",
IEEE TRANSACTIONS ON SPEECH AND AUDIO
PROCESSING, VOL. 6, NO. 6, NOVEMBER 1998, pages
539-548.

[I l l The General Hidden Markov Model library (GHMM) web
page: http://www.ghmm.org/.

[I21 University of New Mexico's Computer Immune Systems
Project web page:
http://www.cs.unm.edul-immsec/systemcdls.htm.

474

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 22:08 from IEEE Xplore. Restrictions apply.

http://www.ghmm.org
http://www.cs.unm.edul-immsec/systemcdls.htm

