12,856 research outputs found
Non-Coherent Cooperative Communications Dispensing with Channel Estimation Relying on Erasure Insertion Aided Reed-Solomon Coded SFH M-ary FSK Subjected to Partial-Band Interference and Rayleigh Fading
The rationale of our design is that although much of the literature of cooperative systems assumes perfect coherent detection, the assumption of having any channel estimates at the relays imposes an unreasonable burden on the relay station. Hence, non-coherently detected Reed-Solomon (ReS) coded Slow Frequency Hopping (SFH) assisted M -ary Frequency Shift Keying (FSK) is proposed for cooperative wireless networks, subjected to both partial-band interference and Rayleigh fading. Erasure insertion (EI) assisted ReS decoding based on the joint maximum output-ratio threshold test (MO-RTT) is investigated in order to evaluate the attainable system performance. Compared to the conventional error-correction-only decoder, the EI scheme may achieve an Eb/N0 gain of approximately 3dB at the Codeword Error Probability, Pw , of 10-4 , when employing the ReS (31, 20) code combined with 32-FSK modulation. Additionally, we evaluated the system’s performance, when either equal gain combining (EGC) or selection combining (SC) techniques are employed at the destination’s receiver. The results demonstrated that in the presence of one and two assisting relays, the EGC scheme achieves gains of 1.5 dB and 1.0 dB at the Pw of 10-6 , respectively, compared to the SC arrangement. Furthermore, we demonstrated that for the same coding rate and packet size, the ReS (31, 20) code using EI decoding is capable of outperforming convolutional coding, when 32-FSK modulation is considered, whilst LDPC coding had an edge over the above two schemes
Measurement of macroscopic plasma parameters with a radio experiment: Interpretation of the quasi-thermal noise spectrum observed in the solar wind
The ISEE-3 SBH radio receiver has provided the first systematic observations of the quasi-thermal (plasma waves) noise in the solar wind plasma. The theoretical interpretation of that noise involves the particle distribution function so that electric noise measurements with long antennas provide a fast and independent method of measuring plasma parameters: densities and temperatures of a two component (core and halo) electron distribution function have been obtained in that way. The polarization of that noise is frequency dependent and sensitive to the drift velocity of the electron population. Below the plasma frequency, there is evidence of a weak noise spectrum with spectral index -1 which is not yet accounted for by the theory. The theoretical treatment of the noise associated with the low energy (thermal) proton population shows that the moving electrical antenna radiates in the surrounding plasma by Carenkov emission which becomes predominant at the low frequencies, below about 0.1 F sub P
Fluid Flows of Mixed Regimes in Porous Media
In porous media, there are three known regimes of fluid flows, namely,
pre-Darcy, Darcy and post-Darcy. Because of their different natures, these are
usually treated separately in literature. To study complex flows when all three
regimes may be present in different portions of a same domain, we use a single
equation of motion to unify them. Several scenarios and models are then
considered for slightly compressible fluids. A nonlinear parabolic equation for
the pressure is derived, which is degenerate when the pressure gradient is
either small or large. We estimate the pressure and its gradient for all time
in terms of initial and boundary data. We also obtain their particular bounds
for large time which depend on the asymptotic behavior of the boundary data but
not on the initial one. Moreover, the continuous dependence of the solutions on
initial and boundary data, and the structural stability for the equation are
established.Comment: 33 page
Hole polaron formation and migration in olivine phosphate materials
By combining first principles calculations and experimental XPS measurements,
we investigate the electronic structure of potential Li-ion battery cathode
materials LiMPO4 (M=Mn,Fe,Co,Ni) to uncover the underlying mechanisms that
determine small hole polaron formation and migration. We show that small hole
polaron formation depends on features in the electronic structure near the
valence-band maximum and that, calculationally, these features depend on the
methodology chosen for dealing with the correlated nature of the
transition-metal d-derived states in these systems. Comparison with experiment
reveals that a hybrid functional approach is superior to GGA+U in correctly
reproducing the XPS spectra. Using this approach we find that LiNiPO4 cannot
support small hole polarons, but that the other three compounds can. The
migration barrier is determined mainly by the strong or weak bonding nature of
the states at the top of the valence band, resulting in a substantially higher
barrier for LiMnPO4 than for LiCoPO4 or LiFePO4
Low-Temperature Optical Characterization of Single CdS Nanowires
We use spatially resolved micro-PL imaging at low temperature to study
optical properties of two sets of CdS nanowires grown using 20 nm and 50 nm
catalysts. We find that low temperature PL of single nanowires is an ideal
technique to gauge the quality of a given growth run, and moreover enables the
collection of detailed spatial information on single wire electronic states.Comment: IEEE Nano 2006 Proceeding
Relativistic Coulomb Resummation in QCD
A relativistic Coulomb-like resummation factor in QCD is suggested, based on
the solution of the quasipotential equation.Comment: 4 pages, 2 eps figures, REVTe
Type 2 solar radio events observed in the interplanetary medium. Part 1: General characteristics
Twelve type 2 solar radio events were observed in the 2 MHz to 30 kHz frequency range by the radio astronomy experiment on the ISEE-3 satellite over the period from September 1978 to December 1979. These data provide the most comprehensive sample of type 2 radio bursts observed at kilometer wavelengths. Dynamic spectra of a number of events are presented. Where possible, the 12 events were associated with an initiating flare, ground based radio data, the passage of a shock at the spacecraft, and the sudden commencement of a geomagnetic storm. The general characteristics of kilometric type 2 bursts are discussed
Recommended from our members
Draft Genome Sequences of Four Saccharibacter sp. Strains Isolated from Native Bees.
The genus Saccharibacter is currently understudied, with only one described species, Saccharibacter floricola, isolated from a flower. In an effort to better understand the microbes that come in contact with native bee pollinators, we isolated and sequenced four additional strains of Saccharibacter from native bees in the genera Melissodes and Anthophora These genomes range in size from 2,104,494 to 2,316,791 bp (mean, 2,246,664 bp) and contain between 1,860 and 2,167 (mean, 2,060) protein-coding genes
MAGIC sensitivity to millisecond-duration optical pulses
The MAGIC telescopes are a system of two Imaging Atmospheric Cherenkov
Telescopes (IACTs) designed to observe very high energy (VHE) gamma rays above
~50 GeV. However, as IACTs are sensitive to Cherenkov light in the UV/blue and
use photo-detectors with a time response well below the ms scale, MAGIC is also
able to perform simultaneous optical observations. Through an alternative
system installed in the central PMT of MAGIC II camera, the so-called central
pixel, MAGIC is sensitive to short (1ms - 1s) optical pulses. Periodic signals
from the Crab pulsar are regularly monitored. Here we report for the first time
the experimental determination of the sensitivity of the central pixel to
isolated 1-10 ms long optical pulses. The result of this study is relevant for
searches of fast transients such as Fast Radio Bursts (FRBs).Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC
2017), Bexco, Busan, Korea (arXiv:1708.05153
- …
