8,932 research outputs found
Computationally-efficient stochastic cluster dynamics method for modeling damage accumulation in irradiated materials
An improved version of a recently developed stochastic cluster dynamics (SCD)
method {[}Marian, J. and Bulatov, V. V., {\it J. Nucl. Mater.} \textbf{415}
(2014) 84-95{]} is introduced as an alternative to rate theory (RT) methods for
solving coupled ordinary differential equation (ODE) systems for irradiation
damage simulations. SCD circumvents by design the curse of dimensionality of
the variable space that renders traditional ODE-based RT approaches inefficient
when handling complex defect population comprised of multiple (more than two)
defect species. Several improvements introduced here enable efficient and
accurate simulations of irradiated materials up to realistic (high) damage
doses characteristic of next-generation nuclear systems. The first improvement
is a procedure for efficiently updating the defect reaction-network and event
selection in the context of a dynamically expanding reaction-network. Next is a
novel implementation of the -leaping method that speeds up SCD
simulations by advancing the state of the reaction network in large time
increments when appropriate. Lastly, a volume rescaling procedure is introduced
to control the computational complexity of the expanding reaction-network
through occasional reductions of the defect population while maintaining
accurate statistics. The enhanced SCD method is then applied to model defect
cluster accumulation in iron thin films subjected to triple ion-beam
(, and \text{H\ensuremath{{}^{+}}})
irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo
simulations are prohibitively expensive
Non-Coherent Cooperative Communications Dispensing with Channel Estimation Relying on Erasure Insertion Aided Reed-Solomon Coded SFH M-ary FSK Subjected to Partial-Band Interference and Rayleigh Fading
The rationale of our design is that although much of the literature of cooperative systems assumes perfect coherent detection, the assumption of having any channel estimates at the relays imposes an unreasonable burden on the relay station. Hence, non-coherently detected Reed-Solomon (ReS) coded Slow Frequency Hopping (SFH) assisted M -ary Frequency Shift Keying (FSK) is proposed for cooperative wireless networks, subjected to both partial-band interference and Rayleigh fading. Erasure insertion (EI) assisted ReS decoding based on the joint maximum output-ratio threshold test (MO-RTT) is investigated in order to evaluate the attainable system performance. Compared to the conventional error-correction-only decoder, the EI scheme may achieve an Eb/N0 gain of approximately 3dB at the Codeword Error Probability, Pw , of 10-4 , when employing the ReS (31, 20) code combined with 32-FSK modulation. Additionally, we evaluated the system’s performance, when either equal gain combining (EGC) or selection combining (SC) techniques are employed at the destination’s receiver. The results demonstrated that in the presence of one and two assisting relays, the EGC scheme achieves gains of 1.5 dB and 1.0 dB at the Pw of 10-6 , respectively, compared to the SC arrangement. Furthermore, we demonstrated that for the same coding rate and packet size, the ReS (31, 20) code using EI decoding is capable of outperforming convolutional coding, when 32-FSK modulation is considered, whilst LDPC coding had an edge over the above two schemes
Measurement of macroscopic plasma parameters with a radio experiment: Interpretation of the quasi-thermal noise spectrum observed in the solar wind
The ISEE-3 SBH radio receiver has provided the first systematic observations of the quasi-thermal (plasma waves) noise in the solar wind plasma. The theoretical interpretation of that noise involves the particle distribution function so that electric noise measurements with long antennas provide a fast and independent method of measuring plasma parameters: densities and temperatures of a two component (core and halo) electron distribution function have been obtained in that way. The polarization of that noise is frequency dependent and sensitive to the drift velocity of the electron population. Below the plasma frequency, there is evidence of a weak noise spectrum with spectral index -1 which is not yet accounted for by the theory. The theoretical treatment of the noise associated with the low energy (thermal) proton population shows that the moving electrical antenna radiates in the surrounding plasma by Carenkov emission which becomes predominant at the low frequencies, below about 0.1 F sub P
Fluid Flows of Mixed Regimes in Porous Media
In porous media, there are three known regimes of fluid flows, namely,
pre-Darcy, Darcy and post-Darcy. Because of their different natures, these are
usually treated separately in literature. To study complex flows when all three
regimes may be present in different portions of a same domain, we use a single
equation of motion to unify them. Several scenarios and models are then
considered for slightly compressible fluids. A nonlinear parabolic equation for
the pressure is derived, which is degenerate when the pressure gradient is
either small or large. We estimate the pressure and its gradient for all time
in terms of initial and boundary data. We also obtain their particular bounds
for large time which depend on the asymptotic behavior of the boundary data but
not on the initial one. Moreover, the continuous dependence of the solutions on
initial and boundary data, and the structural stability for the equation are
established.Comment: 33 page
R-evolution: Improving perturbative QCD
Perturbative QCD results in the MSbar scheme can be dramatically improved by
switching to a scheme that accounts for the dominant power law dependence on
the factorization scale in the operator product expansion. We introduce the
``MSR scheme'' which achieves this in a Lorentz and gauge invariant way. The
MSR scheme has a very simple relation to MSbar, and can be easily used to
reanalyze MSbar results. Results in MSR depend on a cutoff parameter R, in
addition to the mu of MSbar. R variations can be used to independently estimate
i) the size of power corrections, and ii) higher order perturbative corrections
(much like mu in MSbar). We give two examples at three-loop order, the ratio of
mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a
function of momentum transfer Q in deep inelastic scattering. Comparing to
data, the perturbative MSR results work well even for Q ~ 1 GeV, and the size
of power corrections is reduced compared to those in MSbar.Comment: 4 pages, 3 figures, axis label for Fig.2 fixe
System interactions of stormwater management using sustainable urban drainage systems and green infrastructure
This study explores system interactions of stormwater management solutions using Sustainable Urban Drainage System (SuDS) and Green Infrastructure (GI) within the wider urban landscape. A series of interdependencies between urban components relating to stormwater management are identified. These include physical interdependency, geographical interdependency, cyber interdependency and logical interdependency, as defined by Peerenboom (2001). Stormwater management using SuDS/GI are viewed according to their Hydrological, Ecological and the Built Environment functions during events up to the design rain (non-flood condition) and during controlled exceedance and uncontrolled inundation (flood condition). The inclusion of SuDS/GI into the urban fabric is shown to modify urban functional and relational interdependencies under both these conditions. Within the context of the UK, there are fragmented responsibilities across planning scales created by SuDS/GI solutions which have not addressed the relational complexities that exist between agencies and competent authorities. The paper identifies the key barriers towards effective adoption of SuDS/GI within the context of the UK as physical barriers, perception/information barriers and organisational barriers.This work is part of the Blue Green Cities project funded by the UK Engineering and Physical Sciences Research Council, grant EP/K013661/1.This is the final version of the article. It first appeared from Taylor & Francis via http://dx.doi.org/10.1080/1573062X.2015.103608
Applying graph coloring in resource coordination for a high-density wireless environment
In a high density wireless environment, channel interference among users of many overlapped Basic Service Sets (OBSSs) is a serious problem. Our solution for the problem relies on a resource coordination scheme that utilizes the spatial distribution of the transceivers for channel reuse and time-slot division multiplexing for downlink transmission sharing among all participating BSSs. In this paper we show that an OBSS environment can be modeled by a planar graph and the OBSS group coordination assignment problem can be considered as a vertex coloring problem whose solution involves at most four colors. The graph coloring solution algorithm for the OBSS group coordination assignment is presented. The actual coloring is demonstrated, using a heuristics of Maximum Degree First. Performance simulation results of the coordination algorithm are also presented. © 2008 IEEE
Temperature dependent photoluminescence of single CdS nanowires
Temperature dependent photoluminescence (PL) is used to study the electronic
properties of single CdS nanowires. At low temperatures, both near-band edge
(NBE) photoluminescence (PL) and spatially-localized defect-related PL are
observed in many nanowires. The intensity of the defect states is a sensitive
tool to judge the character and structural uniformity of nanowires. As the
temperature is raised, the defect states rapidly quench at varying rates
leaving the NBE PL which dominates up to room temperature. All PL lines from
nanowires follow closely the temperature-dependent band edge, similar to that
observed in bulk CdS.Comment: 11 pages, 4 figure
- …