997 research outputs found

    Externally blown flap impingement parameters

    Get PDF
    The performance of two externally blown flap (EBF) wind tunnel models was compared with an engine exhaust flap impingement correlation parameter. One model was a four engine EBF triple slotted flap transport. Isolated engine wake surveys were conducted to define the wake properties of five separate engine configurations for which performance data were available. The other model was a two engine EBF transport for which the engine wake properties were estimated. The correlation parameter was a function of engine exhaust dynamic pressure at the flap location, area of engine exhaust flap impingement, total exhaust area at the flap location, and engine thrust. The distribution of dynamic pressure for the first model was measured; however, the distribution for the second model was assumed to be uniform

    Reduction of high-speed impulsive noise by blade planform modification of a model helicopter rotor

    Get PDF
    The reduction of high speed impulsive noise for the UH-1H helicopter was investigated by using an advanced main rotor system. The advanced rotor system had a tapered blade planform compared with the rectangular planform of the standard rotor system. Models of both the advanced main rotor system and the UH-1H standard main rotor system were tested at 1/4 scale in the 4 by 7 Meter Tunnel. In plane acoustic measurements of the high speed impulsive noise demonstrated that the advanced rotor system on the UH-1H helicopter reduced the high speed impulsive noise by up to 20 dB, with a reduction in overall sound pressure level of up to 5 dB

    Experimental blade vortex interaction noise characteristics of a utility helicopter at 1/4 scale

    Get PDF
    Models of both the advanced main rotor system and the standard or "baseline" UH-1 main rotor system were tested at one-quarter scale in the Langley 4- by 7-Meter (V/STOL) Tunnel using the general rotor model system. Tests were conducted over a range of descent angles which bracketed the blade-vortex interaction phenomenon for a range of simulated forward speeds. The tunnel was operated in the open-throat configuration with acoustic treatment to improve the semi-anechoic characteristics of the test chamber. Acoustical data obtained for these two rotor systems operating at similar flight conditions are presented without analysis or discussion

    Helicopter noise research at the Langley V/STOL tunnel

    Get PDF
    The noise generated from a 1/4-scale AH-1G helicopter configuration was investigated in the Langley V/STOL tunnel. Microphones were installed in positions scaled to those for which flight test data were available. Model and tunnel conditions were carefully set to properly scaled flight conditions. Data presented indicate a high degree of similarity between model and flight test results. It was found that the pressure time history waveforms are very much alike in shape and amplitude. Blade slap when it occurred seemed to be generated in about the same location in the rotor disk as on the flight vehicle. If model and tunnel conditions were properly matched, including inflow turbulence characteristics, the intensity of the blade-slap impulse seemed to correlate well with flight

    Longitudinal aerodynamics of a low-wing lift-fan transport including hover characteristics in and out of ground effect

    Get PDF
    A wind-tunnel investigation was conducted in the Langley V/STOL tunnel to determine the longitudinal aerodynamic characteristics of a six-fan, tip-driven (remote) lift-fan VTOL transport throughout transition. The large midspan lift-fan pods and cruise fans were removed to determine their influence on the stability and control of the configuration. Data were obtained in the hovering mode for ranges of model height above ground. The data are presented without analysis or discussion

    Preliminary rotor wake measurements with a laser velocimeter

    Get PDF
    A laser velocimeter (LV) was used to determine rotor wake characteristics. The effect of various fuselage widths and rotor-fuselage spacings on time averaged and detailed time dependent rotor wake velocity characteristics was defined. Definition of time dependent velocity characteristics was attempted with the LV by associating a rotor azimuth position with each velocity measurement. Results were discouraging in that no apparent time dependent velocity characteristics could be discerned from the LV measurements. Since the LV is a relatively new instrument in the rotor wake measurement field, the cause of this lack of periodicity is as important as the basic research objectives. An attempt was made to identify the problem by simulated acquisition of LV-type data for a predicted rotor wake velocity time history. Power spectral density and autocorrelation function estimation techniques were used to substantiate the conclusion that the primary cause of the lack of time dependent velocity characteristics was the nonstationary flow condition generated by the periodic turbulence level that currently exists in the open throat configuration of the wind tunnel

    Longitudinal aerodynamic characteristics of an externally blown flap powered lift model with several propulsive system simulators

    Get PDF
    An investigation of a four-engine externally blown flap (EBF) powered-lift transport was conducted in the Langley V/STOL tunnel to determine the effect of different engine configurations on the longitudinal aerodynamic characteristics. The different engine configurations were simulated by five different sets of propulsion simulators on a single aircraft model. Longitudinal aerodynamic data were obtained for each simulator on each flap deflection corresponding to cruise, take-off, and landing at a range of angles of attack and various thrust coefficients. The bypass ratio (BPR) 6.2 engine simulator provided the best lift and drag characteristics of the five simulators tested in the take-off and landing configurations. The poor performance of the BPR 10.0 and 3.2 engine simulators can be attributed to a mismatch of engine-model sizes or poor engine location and orientation. Isolated engine wake surveys indicated that a reasonable assessment of the aerodynamic characteristics of an engine-wing-flap configuration could be made if qualitative information were available which defined the engine wake characteristics. All configurations could be trimmed easily with relatively small horizontal-tail incidence angles; however, the take-off landing configurations required a high-lift tail

    Evaluation of helicopter noise due to b blade-vortex interaction for five tip configurations

    Get PDF
    The effect of tip shape modification on blade vortex interaction induced helicopter blade slap noise was investigated. Simulated flight and descent velocities which have been shown to produce blade slap were tested. Aerodynamic performance parameters of the rotor system were monitored to ensure properly matched flight conditions among the tip shapes. The tunnel was operated in the open throat configuration with treatment to improve the acoustic characteristics of the test chamber. Four promising tips were used along with a standard square tip as a baseline configuration. A detailed acoustic evaluation on the same rotor system of the relative applicability of the various tip configurations for blade slap noise reduction is provided

    Rotor performance characteristics from an aeroacoustic helicopter wind-tunnel test program

    Get PDF
    An investigation of helicopter rotor noise at model scale was conducted in the Langley 4 by 7 meter tunnel. The program described was the first of a planned three-phase project whose purpose was to examine the characteristic noise mechanism involved in main rotor/tail rotor interaction noise. This first phase was conducted with a main rotor only, in order to identify the characteristic noise generated by only the main rotor. The aerodynamic operating conditions of the rotor system were defined during the test. The acoustic data were properly referenced

    A laser velocimeter flow survey above a stalled wing

    Get PDF
    A laser velocimeter operating in the backscatter mode was used to survey the flow about a stalled wing installed in the Langley V/STOL tunnel. Mean velocities and magnitudes of velocity fluctuations were calculated from measurements of two orthogonal components of velocity. Free shear mixing layers above and below a large separated flow region were defined. Velocity power spectra were calculated at two points in the flow field. The flow-field survey was carried out about a rectangular aspect-ratio-8 wing with an airfoil section. The wing angle of attack was 19.4 deg, the Mach number was 0.148, and the nominal Reynolds number was 1 x 1 million
    corecore