6,816 research outputs found

    Anomalous Magnetic and Thermal Behavior in Some RMn2O5 Oxides

    Full text link
    The RMn2O5 (R=Pr, Nd, Sm, and Eu) oxides showing magnetoelectric (ME) behavior have been prepared in polycrystalline form by a standard citrate route. The lattice parameters, obtained from the powder XRD analysis, follow the rare-earth contraction indicating the trivalent character of the R ions. Cusp-like anomalies in the magnetic susceptibility curve and sharp peaks in the specific heat were reported at the corresponding temperatures in RMn2O5 (R=Pr, Nd, Sm, and Eu) indicating the magnetic or electric ordering transitions.Comment: 2 pages, 1 table, 3 figures, will be published in the Proceedings of the 24th International Conference on Low Temperature Physic

    Chemoenzymatic Labeling of Proteins for Imaging in Bacterial Cells

    Get PDF
    Reliable methods to determine the subcellular localization of bacterial proteins are needed for the study of prokaryotic cell biology. We describe here a simple and general technique for imaging of bacterial proteins in situ by fluorescence microscopy. The method uses the eukaryotic enzyme N-myristoyltransferase to modify the N-terminus of the protein of interest with an azido fatty acid. Subsequent strain-promoted azide–alkyne cycloaddition allows conjugation of dyes and imaging of tagged proteins by confocal fluorescence microscopy. We demonstrate the method by labeling the chemotaxis proteins Tar and CheA and the cell division proteins FtsZ and FtsA in Escherichia coli. We observe distinct spatial patterns for each of these proteins in both fixed and live cells. The method should prove broadly useful for protein imaging in bacteria

    In-situ fabrication of cobalt-doped SrFe2As2 thin films by using pulsed laser deposition with excimer laser

    Full text link
    The remarkably high superconducting transition temperature and upper critical field of iron(Fe)-based layered superconductors, despite ferromagnetic material base, open the prospect for superconducting electronics. However, success in superconducting electronics has been limited because of difficulties in fabricating high-quality thin films. We report the growth of high-quality c-axis-oriented cobalt(Co)-doped SrFe2As2 thin films with bulk superconductivity by using an in-situ pulsed laser deposition technique with a 248-nm-wavelength KrF excimer laser and an arsenic(As)-rich phase target. The temperature and field dependences of the magnetization showing strong diamagnetism and transport critical current density with superior Jc-H performance are reported. These results provide necessary information for practical applications of Fe-based superconductors.Comment: 8 pages, 3figures. to be published at Appl. Phys. Let

    Ciliary abnormalities in idiopathic bronchiectasis

    Get PDF
    published_or_final_versio

    Ciliary central microtubular orientation in stable bronchiectasis

    Get PDF
    published_or_final_versio

    Moyal Representation of the String Field Star Product in the Presence of a B-background

    Get PDF
    In this paper we show that in the presence of an anti-symmetric tensor BB-background, Witten's star algebra for open string fields persists to possess the structure of a direct product of commuting Moyal pairs. The interplay between the noncommutativity due to three-string overlap and that due to the BB-background is our main concern. In each pair of noncommutative directions parallel to the BB-background, the Moyal pairs mix string modes in the two directions and are labeled, in addition to a continuous parameter, by {\it two} discrete values as well. However, the Moyal parameters are BB-dependent only for discrete pairs. We have also demonstrated the large-BB contraction of the star algebra, with one of the discrete Moyal pairs dropping out while the other giving rise to the center-of-mass noncommutative function algebra.Comment: minor notation chang

    The Sloan Digital Sky Survey Reverberation Mapping Project: Ensemble Spectroscopic Variability of Quasar Broad Emission Lines

    Get PDF
    We explore the variability of quasars in the MgII and Hbeta broad emission lines and UV/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over 66 months, containing 357 quasars with MgII and 41 quasars with Hbeta . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional 28542854 quasars with MgII and 572 quasars with Hbeta. The MgII emission line is significantly variable (Δf/f\Delta f/f 10% on 100-day timescales), a necessary prerequisite for its use for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of ≳5\gtrsim 5 days. We compare the emission-line and continuum variability to investigate the structure of the broad-line region. Broad-line variability shows a shallower increase with timescale compared to the continuum emission, demonstrating that the broad-line transfer function is not a δ\delta-function. Hbeta is more variable than MgII (roughly by a factor of 1.51.5), suggesting different excitation mechanisms, optical depths and/or geometrical configuration for each emission line. The ensemble spectroscopic variability measurements enabled by the SDSS-RM project have important consequences for future studies of reverberation mapping and black hole mass estimation of 1<z<21<z<2 quasars.Comment: 20 pages, 25 figures. ApJ accepted: minor revisions following referee repor

    Electronic states on a twin boundary of a d-wave superconductor

    Full text link
    We show that an induced ss-wave harmonic in the superconducting gap of an orthorhombic dx2−y2d_{x^2-y^2} superconductor strongly affects the excitation spectrum near a twinning plane. In particular, it yields bound states of zero energy with areal density proportional to the relative weight of the ss-wave component. An unusual scattering process responsible for the thermal conductivity across the twin boundary at low temperatures is also identified.Comment: 4 pages, ReVTEX, 2 PS-figure

    SUMO chain formation is required for response to replication arrest in S. pombe

    Get PDF
    SUMO is a ubiquitin-like protein that is post-translationally attached to one or more lysine residues on target proteins. Despite having only 18% sequence identity with ubiquitin, SUMO contains the conserved betabetaalphabetabetaalphabeta fold present in ubiquitin. However, SUMO differs from ubiquitin in having an extended N-terminus. In S. pombe the N-terminus of SUMO/Pmt3 is significantly longer than those of SUMO in S. cerevisiae, human and Drosophila. Here we investigate the role of this N-terminal region. We have used two dimensional gel electrophoresis to demonstrate that S. pombe SUMO/Pmt3 is phosphorylated, and that this occurs on serine residues at the extreme N-terminus of the protein. Mutation of these residues (in pmt3-1) results in a dramatic reduction in both the levels of high Mr SUMO-containing species and of total SUMO/Pmt3, indicating that phosphorylation of SUMO/Pmt3 is required for its stability. Despite the significant reduction in high Mr SUMO-containing species, pmt3-1 cells do not display an aberrant cell morphology or sensitivity to genotoxins or stress. Additionally, we demonstrate that two lysine residues in the N-terminus of S. pombe SUMO/Pmt3 (K14 and K30) can act as acceptor sites for SUMO chain formation in vitro. Inability to form SUMO chains results in aberrant cell and nuclear morphologies, including stretched and fragmented chromatin. SUMO chain mutants are sensitive to the DNA synthesis inhibitor, hydroxyurea (HU), but not to other genotoxins, such as UV, MMS or CPT. This implies a role for SUMO chains in the response to replication arrest in S. pomb
    • …
    corecore