2,263 research outputs found
Can degenerate bound states occur in one dimensional quantum mechanics?
We point out that bound states, degenerate in energy but differing in parity,
may form in one dimensional quantum systems even if the potential is
non-singular in any finite domain. Such potentials are necessarily unbounded
from below at infinity and occur in several different contexts, such as in the
study of localised states in brane-world scenarios. We describe how to
construct large classes of such potentials and give explicit analytic
expressions for the degenerate bound states. Some of these bound states occur
above the potential maximum while some are below. Various unusual features of
the bound states are described and after highlighting those that are ansatz
independent, we suggest that it might be possible to observe such parity-paired
degenerate bound states in specific mesoscopic systems.Comment: 10 pages, 2 figures, to appear in Europhysics Letter
Variability in Basal Melting Beneath Pine Island Ice Shelf on Weekly to Monthly Timescales
Oceanâdriven basal melting of Amundsen Sea ice shelves has triggered acceleration, thinning, and grounding line retreat on many West Antarctic outlet glaciers. Here we present the first yearâlong (2014) record of basal melt rate at subâweekly resolution from a location on the outer Pine Island Ice Shelf. Adjustment of the upper thermocline to local wind forced variability in the vertical Ekman velocity is the dominant control on basal melting at weekly to monthly timescales. Atmosphereâiceâocean surface heat fluxes or changes in advection of modified Circumpolar Deep Water play no discernible role at these timescales. We propose that during other years, a deepening of the thermocline in Pine Island Bay driven by longer timescale processes may have suppressed the impact of local wind forcing on highâfrequency upper thermocline height variability and basal melting. This highlights the complex interplay between the different processes and their timescales that set the basal melt rate beneath Pine Island Ice Shelf
Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks
Recurrent neural networks (RNNs) are widely used in computational
neuroscience and machine learning applications. In an RNN, each neuron computes
its output as a nonlinear function of its integrated input. While the
importance of RNNs, especially as models of brain processing, is undisputed, it
is also widely acknowledged that the computations in standard RNN models may be
an over-simplification of what real neuronal networks compute. Here, we suggest
that the RNN approach may be made both neurobiologically more plausible and
computationally more powerful by its fusion with Bayesian inference techniques
for nonlinear dynamical systems. In this scheme, we use an RNN as a generative
model of dynamic input caused by the environment, e.g. of speech or kinematics.
Given this generative RNN model, we derive Bayesian update equations that can
decode its output. Critically, these updates define a 'recognizing RNN' (rRNN),
in which neurons compute and exchange prediction and prediction error messages.
The rRNN has several desirable features that a conventional RNN does not have,
for example, fast decoding of dynamic stimuli and robustness to initial
conditions and noise. Furthermore, it implements a predictive coding scheme for
dynamic inputs. We suggest that the Bayesian inversion of recurrent neural
networks may be useful both as a model of brain function and as a machine
learning tool. We illustrate the use of the rRNN by an application to the
online decoding (i.e. recognition) of human kinematics
Higher dimensional flat embeddings of (2+1) dimensional black holes
We obtain the higher dimensional global flat embeddings of static, rotating,
and charged BTZ black holes. On the other hand, we also study the similar
higher dimensional flat embeddings of the (2+1) de Sitter black holes which are
the counterparts of the anti-de Sitter BTZ black holes. As a result, the
charged dS black hole is shown to be embedded in (3+2) GEMS, contrast to the
charged BTZ one having (3+3) GEMS structure.Comment: 16pages, revtex, no figures, to appear in Phys. Rev.
Results from the centers for disease control and prevention's predict the 2013-2014 Influenza Season Challenge
Background: Early insights into the timing of the start, peak, and intensity of the influenza season could be useful in planning influenza prevention and control activities. To encourage development and innovation in influenza forecasting, the Centers for Disease Control and Prevention (CDC) organized a challenge to predict the 2013-14 Unites States influenza season. Methods: Challenge contestants were asked to forecast the start, peak, and intensity of the 2013-2014 influenza season at the national level and at any or all Health and Human Services (HHS) region level(s). The challenge ran from December 1, 2013-March 27, 2014; contestants were required to submit 9 biweekly forecasts at the national level to be eligible. The selection of the winner was based on expert evaluation of the methodology used to make the prediction and the accuracy of the prediction as judged against the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). Results: Nine teams submitted 13 forecasts for all required milestones. The first forecast was due on December 2, 2013; 3/13 forecasts received correctly predicted the start of the influenza season within one week, 1/13 predicted the peak within 1 week, 3/13 predicted the peak ILINet percentage within 1 %, and 4/13 predicted the season duration within 1 week. For the prediction due on December 19, 2013, the number of forecasts that correctly forecasted the peak week increased to 2/13, the peak percentage to 6/13, and the duration of the season to 6/13. As the season progressed, the forecasts became more stable and were closer to the season milestones. Conclusion: Forecasting has become technically feasible, but further efforts are needed to improve forecast accuracy so that policy makers can reliably use these predictions. CDC and challenge contestants plan to build upon the methods developed during this contest to improve the accuracy of influenza forecasts. © 2016 The Author(s)
Relation of DNA Methylation of 5âČ-CpG Island of ACSL3 to Transplacental Exposure to Airborne Polycyclic Aromatic Hydrocarbons and Childhood Asthma
In a longitudinal cohort of âŒ700 children in New York City, the prevalence of asthma (>25%) is among the highest in the US. This high risk may in part be caused by transplacental exposure to traffic-related polycyclic aromatic hydrocarbons (PAHs) but biomarkers informative of PAH-asthma relationships is lacking. We here hypothesized that epigenetic marks associated with transplacental PAH exposure and/or childhood asthma risk could be identified in fetal tissues. Mothers completed personal prenatal air monitoring for PAH exposure determination. Methylation sensitive restriction fingerprinting was used to analyze umbilical cord white blood cell (UCWBC) DNA of 20 cohort children. Over 30 DNA sequences were identified whose methylation status was dependent on the level of maternal PAH exposure. Six sequences were found to be homologous to known genes having one or more 5âČ-CpG island(s) (5âČ-CGI). Of these, acyl-CoA synthetase long-chain family member 3 (ACSL3) exhibited the highest concordance between the extent of methylation of its 5âČ-CGI in UCWBCs and the level of gene expression in matched fetal placental tissues in the initial 20 cohort children. ACSL3 was therefore chosen for further investigation in a larger sample of 56 cohort children. Methylation of the ACSL3 5âČ-CGI was found to be significantly associated with maternal airborne PAH exposure exceeding 2.41 ng/m3 (ORâ=â13.8; p<0.001; sensitivityâ=â75%; specificityâ=â82%) and with a parental report of asthma symptoms in children prior to age 5 (ORâ=â3.9; p<0.05). Thus, if validated, methylated ACSL3 5âČCGI in UCWBC DNA may be a surrogate endpoint for transplacental PAH exposure and/or a potential biomarker for environmentally-related asthma. This exploratory report provides a new blueprint for the discovery of epigenetic biomarkers relevant to other exposure assessments and/or investigations of exposure-disease relationships in birth cohorts. The results support the emerging theory of early origins of later life disease development
Nrf2 status affects tumor growth, HDAC3 gene promoter associations, and the response to sulforaphane in the colon
BACKGROUND: The dietary agent sulforaphane (SFN) has been reported to induce nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2)-dependent pathways as well as inhibiting histone deacetylase (HDAC) activity. The current investigation sought to examine the relationships between Nrf2 status and HDAC expression in preclinical and translational studies. RESULTS: Wild type (WT) and Nrf2-deficient (Nrf2(â/+)) mice were treated with the colon carcinogen 1,2-dimethylhydrazine (DMH) followed by 400 ppm SFN in the diet (nâ=â35 mice/group). WT mice were more susceptible than Nrf2(â/+) mice to tumor induction in the colon. Tumors from WT mice had higher HDAC levels globally and locally on genes such as cyclin-dependant kinase inhibitor 2a (Cdkn2a/p16) that were dysregulated during tumor development. The average tumor burden was reduced by SFN from 62.7 to 26.0 mm(3) in WT mice and from 14.6 to 11.7 mm(3) in Nrf2(â/+) mice. The decreased antitumor activity of SFN in Nrf2(â/+) mice coincided with attenuated Cdkn2a promoter interactions involving HDAC3. HDAC3 knockdown in human colon cancer cells recapitulated the effects of SFN on p16 induction. Human subjects given a broccoli sprout extract supplement (200 Όmol SFN equivalents), or reporting more than five cruciferous vegetable servings per week, had increased p16 expression that was inversely associated with HDAC3 in circulating peripheral blood mononuclear cells (PBMCs) and in biopsies obtained during screening colonoscopy. CONCLUSIONS: Nrf2 expression varies widely in both normal human colon and human colon cancers and likely contributes to the overall rate of tumor growth in the large intestine. It remains to be determined whether this influences global HDAC protein expression levels, as well as local HDAC interactions on genes dysregulated during human colon tumor development. If corroborated in future studies, Nrf2 status might serve as a biomarker of HDAC inhibitor efficacy in clinical trials using single agent or combination modalities to slow, halt, or regress the progression to later stages of solid tumors and hematological malignancies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13148-015-0132-y) contains supplementary material, which is available to authorized users
Black tea extract prevents lipopolysaccharide-induced NF-ÎșB signaling and attenuates dextran sulfate sodium-induced experimental colitis
<p>Abstract</p> <p>Background</p> <p>Black tea has been shown to elicit anti-oxidant, anti-carcinogenic, anti-inflammatory and anti-mutagenic properties. In this study, we investigated the impact of black tea extract (BTE) on lipopolysaccharide (LPS)-induced NF-ÎșB signaling in bone marrow derived-macrophages (BMM) and determined the therapeutic efficacy of this extract on colon inflammation.</p> <p>Methods</p> <p>The effect of BTE on LPS-induced NF-ÎșB signaling and pro-inflammatory gene expression was evaluated by RT-PCR, Western blotting, immunofluorescence and electrophoretic mobility shift assay (EMSA). The <it>in vivo </it>efficacy of BTE was assessed in mice with 3% dextran sulfate sodium (DSS)-induced colitis. The severity of colitis was measured by weight loss, colon length and histologic scores.</p> <p>Results</p> <p>LPS-induced IL-12p40, IL-23p19, IL-6 and IL-1ÎČ mRNA expressions were inhibited by BTE. LPS-induced IÎșBα phosphorylation/degradation and nuclear translocation of NF-ÎșB/p65 were blocked by BTE. BTE treatment blocked LPS-induced DNA-binding activity of NF-ÎșB. BTE-fed, DSS-exposed mice showed the less weight loss, longer colon length and lower histologic score compared to control diet-fed, DSS-exposed mice. DSS-induced IÎșBα phosphorylation/degradation and phosphorylation of NF-ÎșB/p65 were blocked by BTE. An increase of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) in DSS-exposed mice was blocked by BTE.</p> <p>Conclusions</p> <p>These results indicate that BTE attenuates colon inflammation through the blockage of NF-ÎșB signaling and apoptosis in DSS-induced experimental colitis model.</p
- âŠ