47,549 research outputs found

    Distribution of methanogenic potential in fractions of turf grass used as inoculum for the start-up of thermophilic anaerobic digestion

    Get PDF
    This study aims to investigate thermophilic methanogens in turf used as an inoculum. Results showed that Methanoculleus sp. regarded as hydrogenotrophic and Methanosarcina sp. regarded as acetoclastic methanogens were present in turf tested. However, active acetoclastic methanogens were present in turf soil only. The current study showed that thermophilic methanogens were present in various turf grass species: Stenotaphrum secundatum, Cynodon dactylon, and Zoysia japonica. Severe treatments of grass leaves under oxic conditions, including blending, drying and pulverizing did not affect the thermophilic hydrogenotrophic methanogenic activity of the grass. A dried and pulverized grass extract could be generated that can serve as a readily storable methanogenic inoculum for thermophilic anaerobic digestion. The methanogens could also be physically extracted into an aqueous suspension, suitable as an inoculum. The possible contribution of the presence of methanogens on grass plants to global greenhouse emissions is briefly discussed

    Dipole-interacting Fermionic Dark Matter in positron, antiproton, and gamma-ray channels

    Full text link
    Cosmic ray signals from dipole-interacting dark matter annihilation are considered in the positron, antiproton and photon channels. The predicted signals in the positron channel could nicely account for the excess of positron fraction from Fermi LAT, PAMELA, HEAT and AMS-01 experiments for the dark matter mass larger than 100 GeV with a boost (enhancement) factor of 30-80. No excess of antiproton over proton ratio at the experiments also gives a severe restriction for this scenario. With the boost factors, the predicted signals from Galactic halo and signals as mono-energetic gamma-ray lines (monochromatic photons) for the region close to the Galactic center are investigated. The gamma-ray excess of recent tentative analyses based on Fermi LAT data and the potential probe of the monochromatic lines at a planned experiment, AMS-02, are also considered.Comment: Version to be published in PRD(2013), Title changed, text modifie

    Characterization Of Thermal Stresses And Plasticity In Through-Silicon Via Structures For Three-Dimensional Integration

    Get PDF
    Through-silicon via (TSV) is a critical element connecting stacked dies in three-dimensional (3D) integration. The mismatch of thermal expansion coefficients between the Cu via and Si can generate significant stresses in the TSV structure to cause reliability problems. In this study, the thermal stress in the TSV structure was measured by the wafer curvature method and its unique stress characteristics were compared to that of a Cu thin film structure. The thermo-mechanical characteristics of the Cu TSV structure were correlated to microstructure evolution during thermal cycling and the local plasticity in Cu in a triaxial stress state. These findings were confirmed by microstructure analysis of the Cu vias and finite element analysis (FEA) of the stress characteristics. In addition, the local plasticity and deformation in and around individual TSVs were measured by synchrotron x-ray microdiffraction to supplement the wafer curvature measurements. The importance and implication of the local plasticity and residual stress on TSV reliabilities are discussed for TSV extrusion and device keep-out zone (KOZ).Microelectronics Research Cente

    In-plane Theory of Non-Sequential Triple Ionization

    Get PDF
    We describe first-principles in-plane calculations of non-sequential triple ionization (NSTI) of atoms in a linearly polarized intense laser pulse. In a fully classically correlated description, all three electrons respond dynamically to the nuclear attraction, the pairwise e-e repulsions and the laser force throughout the duration of a 780nm laser pulse. Nonsequential ejection is shown to occur in a multi-electron, possibly multi-cycle and multi-dimensional, rescattering sequence that is coordinated by a number of sharp transverse recollimation impacts.Comment: 4 pages, 4 figure

    Stress-Induced Delamination Of Through Silicon Via Structures

    Get PDF
    Continuous scaling of on-chip wiring structures has brought significant challenges for materials and processes beyond the 32 nm technology node in microelectronics. Recently three-dimensional (3-D) integration with through-silicon-vias (TSVs) has emerged as an effective solution to meet the future interconnect requirement. Thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper examines the effect of thermal stresses on interfacial reliability of TSV structures. First, the three-dimensional distribution of the thermal stress near the TSV and the wafer surface is analyzed. Using a linear superposition method, a semi-analytic solution is developed for a simplified structure consisting of a single TSV embedded in a silicon (Si) wafer. The solution is verified for relatively thick wafers by comparing to numerical results obtained by finite element analysis (FEA). Results from the stress analysis suggest interfacial delamination as a potential failure mechanism for the TSV structure. Analytical solutions for various TSV designs are then obtained for the steady-state energy release rate as an upper bound for the interfacial fracture driving force, while the effect of crack length is evaluated numerically by FEA. Based on these results, the effects of TSV designs and via material properties on the interfacial reliability are elucidated. Finally, potential failure mechanisms for TSV pop-up due to interfacial fracture are discussed.Aerospace Engineerin

    "Low-state" Black Hole Accretion in Nearby Galaxies

    Full text link
    I summarize the main observational properties of low-luminosity AGNs in nearby galaxies to argue that they are the high-mass analogs of black hole X-ray binaries in the "low/hard" state. The principal characteristics of low-state AGNs can be accommodated with a scenario in which the central engine is comprised of three components: an optically thick, geometrically accretion disk with a truncated inner radius, a radiatively inefficient flow, and a compact jet.Comment: 8 pages. To appear in From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales, ed. T. J. Maccarone, R. P. Fender, and L. C. Ho (Dordrecht: Kluwer

    On Fast and Robust Information Spreading in the Vertex-Congest Model

    Full text link
    This paper initiates the study of the impact of failures on the fundamental problem of \emph{information spreading} in the Vertex-Congest model, in which in every round, each of the nn nodes sends the same O(logn)O(\log{n})-bit message to all of its neighbors. Our contribution to coping with failures is twofold. First, we prove that the randomized algorithm which chooses uniformly at random the next message to forward is slow, requiring Ω(n/k)\Omega(n/\sqrt{k}) rounds on some graphs, which we denote by Gn,kG_{n,k}, where kk is the vertex-connectivity. Second, we design a randomized algorithm that makes dynamic message choices, with probabilities that change over the execution. We prove that for Gn,kG_{n,k} it requires only a near-optimal number of O(nlog3n/k)O(n\log^3{n}/k) rounds, despite a rate of q=O(k/nlog3n)q=O(k/n\log^3{n}) failures per round. Our technique of choosing probabilities that change according to the execution is of independent interest.Comment: Appears in SIROCCO 2015 conferenc

    Thermomechanical Characterization And Modeling For TSV Structures

    Get PDF
    Continual scaling of devices and on-chip wiring has brought significant challenges for materials and processes beyond the 32-nm technology node in microelectronics. Recently, three-dimensional (3-D) integration with through-silicon vias (TSVs) has emerged as an effective solution to meet the future technology requirements. Among others, thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper presents experimental measurements of the thermal stresses in TSV structures and analyses of interfacial reliability. The micro-Raman measurements were made to characterize the local distribution of the near-surface stresses in Si around TSVs. On the other hand, the precision wafer curvature technique was employed to measure the average stress and deformation in the TSV structures subject to thermal cycling. To understand the elastic and plastic behavior of TSVs, the microstructural evolution of the Cu vias was analyzed using focused ion beam (FIB) and electron backscattering diffraction (EBSD) techniques. Furthermore, the impact of thermal stresses on interfacial reliability of TSV structures was investigated by a shear-lag cohesive zone model that predicts the critical temperatures and critical via diameters.Microelectronics Research Cente

    Noncommutative D-Brane in Non-Constant NS-NS B Field Background

    Get PDF
    We show that when the field strength H of the NS-NS B field does not vanish, the coordinates X and momenta P of an open string endpoints satisfy a set of mixed commutation relations among themselves. Identifying X and P with the coordinates and derivatives of the D-brane world volume, we find a new type of noncommutative spaces which is very different from those associated with a constant B field background.Comment: 11 pages, Latex, minor modification
    corecore