38,236 research outputs found

    Noncommutative D-Brane in Non-Constant NS-NS B Field Background

    Get PDF
    We show that when the field strength H of the NS-NS B field does not vanish, the coordinates X and momenta P of an open string endpoints satisfy a set of mixed commutation relations among themselves. Identifying X and P with the coordinates and derivatives of the D-brane world volume, we find a new type of noncommutative spaces which is very different from those associated with a constant B field background.Comment: 11 pages, Latex, minor modification

    Supersymmetric reduced models with a symmetry based on Filippov algebra

    Full text link
    Generalizations of the reduced model of super Yang-Mills theory obtained by replacing the Lie algebra structure to Filippov nn-algebra structures are studied. Conditions for the reduced model actions to be supersymmetric are examined. These models are related with what we call \{cal N}_{min}=2 super pp-brane actions.Comment: v3: In the previous versions we overlooked that Eq.(3.9) holds more generally, and missed some supersymmetric actions. Those are now included and modifications including a slight change in the title were made accordingly. 1+18 page

    VLA Imaging of the Disk Surrounding the Nearby Young Star TW Hya

    Get PDF
    The TW Hya system is perhaps the closest analog to the early solar nebula. We have used the Very Large Array to image TW Hya at wavelengths of 7mm and 3.6 cm with resolutions 0.1 arcseconds (about 5 AU) and 1.0 arcseconds (about 50 AU), respectively. The 7mm emission is extended and appears dominated by a dusty disk of radius larger than 50 AU surrounding the star. The 3.6 cm emission is unresolved and likely arises from an ionized wind or gyrosynchrotron activity. The dust spectrum and spatially resolved 7mm images of the TW Hya disk are fitted by a simple model with temperature and surface density described by radial power laws, T(r)r0.5T(r)\propto r^{-0.5} and Σ(r)r1\Sigma(r) \propto r^{-1}. These properties are consistent with an irradiated gaseous accretion disk of mass 0.03 M\sim0.03~{\rm M_{\odot}} with an accretion rate 108 Myr1\sim10^{-8}~{\rm M_{\odot}yr^{-1}} and viscosity parameter α=0.01\alpha = 0.01. The estimates of mass and mass accretion rates are uncertain as the gas-to-dust ratio in the TW Hya disk may have evolved from the standard interstellar value.Comment: 13 pages, 3 figures, accepted by ApJ Letter

    Iron Emission in the z=6.4 Quasar SDSS J114816.64+525150.3

    Full text link
    We present near-infrared J and K-band spectra of the z = 6.4 quasar SDSS J114816.64+525150.3 obtained with the NIRSPEC spectrograph at the Keck-II telescope, covering the rest-frame spectral regions surrounding the C IV 1549 and Mg II 2800 emission lines. The iron emission blend at rest wavelength 2900-3000 A is clearly detected and its strength appears nearly indistinguishable from that of typical quasars at lower redshifts. The Fe II / Mg II ratio is also similar to values found for lower-redshift quasars, demonstrating that there is no strong evolution in Fe/alpha broad-line emission ratios even out to z=6.4. In the context of current models for iron enrichment from Type Ia supernovae, this implies that the SN Ia progenitor stars formed at z > 10. We apply the scaling relations of Vestergaard and of McLure & Jarvis to estimate the black hole mass from the widths of the C IV and Mg II emission lines and the ultraviolet continuum luminosity. The derived mass is in the range (2-6)x10^9 solar masses, with an additional uncertainty of a factor of 3 due to the intrinsic scatter in the scaling relations. This result is in agreement with the previous mass estimate of 3x10^9 solar masses by Willott, McLure, & Jarvis, and supports their conclusion that the quasar is radiating close to its Eddington luminosity.Comment: To appear in ApJ Letter

    Thermal stability of titanium nitride for shallow junction solar cell contacts

    Get PDF
    To demonstrate the thermal stability of titanium nitride as a high-temperature diffusion barrier, the TiN-Ti-Ag metallization scheme has been tested on shallow-junction (~2000 Å) Si solar cells. Electrical measurements on reference samples with the Ti-Ag metallization scheme show serious degradation after a 600 °C, 10-min annealing. With the TiN-Ti-Ag scheme, no degradation of cell performance is observed after the same heat treatment if the TiN layer is >~1700 Å. The glass encapsulation of cells by electrostatic bonding requires such a heat treatment

    Aspects of U-duality in BLG models with Lorentzian metric 3-algebras

    Full text link
    In our previous paper, it was shown that BLG model based on a Lorentzian metric 3-algebra gives Dp-brane action whose worldvolume is compactified on torus T^d (d=p-2). Here the 3-algebra was a generalized one with d+1 pairs of Lorentzian metric generators and expressed in terms of a loop algebra with central extensions. In this paper, we derive the precise relation between the coupling constant of the super Yang-Mills, the moduli of T^d and some R-R flux with VEV's of ghost fields associated with Lorentzian metric generators. In particular, for d=1, we derive the Yang-Mills action with theta term and show that SL(2,Z) Montonen-Olive duality is realized as the rotation of two VEV's. Furthermore, some moduli parameters such as NS-NS 2-form flux are identified as the deformation parameters of the 3-algebras. By combining them, we recover most of the moduli parameters which are required by U-duality symmetry.Comment: 27 pages, v2: minor correction

    Stress-Induced Delamination Of Through Silicon Via Structures

    Get PDF
    Continuous scaling of on-chip wiring structures has brought significant challenges for materials and processes beyond the 32 nm technology node in microelectronics. Recently three-dimensional (3-D) integration with through-silicon-vias (TSVs) has emerged as an effective solution to meet the future interconnect requirement. Thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper examines the effect of thermal stresses on interfacial reliability of TSV structures. First, the three-dimensional distribution of the thermal stress near the TSV and the wafer surface is analyzed. Using a linear superposition method, a semi-analytic solution is developed for a simplified structure consisting of a single TSV embedded in a silicon (Si) wafer. The solution is verified for relatively thick wafers by comparing to numerical results obtained by finite element analysis (FEA). Results from the stress analysis suggest interfacial delamination as a potential failure mechanism for the TSV structure. Analytical solutions for various TSV designs are then obtained for the steady-state energy release rate as an upper bound for the interfacial fracture driving force, while the effect of crack length is evaluated numerically by FEA. Based on these results, the effects of TSV designs and via material properties on the interfacial reliability are elucidated. Finally, potential failure mechanisms for TSV pop-up due to interfacial fracture are discussed.Aerospace Engineerin

    Electrometry using the quantum Hall effect in a bilayer 2D electron system

    Full text link
    We discuss the development of a sensitive electrometer that utilizes a two-dimensional electron gas (2DEG) in the quantum Hall regime. As a demonstration, we measure the evolution of the Landau levels in a second, nearby 2DEG as the applied perpendicular magnetic field is changed, and extract an effective mass for electrons in GaAs that agrees within experimental error with previous measurements.Comment: 3.5 pages, 3 figures, submitted to APL
    corecore