50,381 research outputs found

    Iterated smoothed bootstrap confidence intervals for population quantiles

    Get PDF
    This paper investigates the effects of smoothed bootstrap iterations on coverage probabilities of smoothed bootstrap and bootstrap-t confidence intervals for population quantiles, and establishes the optimal kernel bandwidths at various stages of the smoothing procedures. The conventional smoothed bootstrap and bootstrap-t methods have been known to yield one-sided coverage errors of orders O(n^{-1/2}) and o(n^{-2/3}), respectively, for intervals based on the sample quantile of a random sample of size n. We sharpen the latter result to O(n^{-5/6}) with proper choices of bandwidths at the bootstrapping and Studentization steps. We show further that calibration of the nominal coverage level by means of the iterated bootstrap succeeds in reducing the coverage error of the smoothed bootstrap percentile interval to the order O(n^{-2/3}) and that of the smoothed bootstrap-t interval to O(n^{-58/57}), provided that bandwidths are selected of appropriate orders. Simulation results confirm our asymptotic findings, suggesting that the iterated smoothed bootstrap-t method yields the most accurate coverage. On the other hand, the iterated smoothed bootstrap percentile method interval has the advantage of being shorter and more stable than the bootstrap-t intervals.Comment: Published at http://dx.doi.org/10.1214/009053604000000878 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Noncommutative D-Brane in Non-Constant NS-NS B Field Background

    Get PDF
    We show that when the field strength H of the NS-NS B field does not vanish, the coordinates X and momenta P of an open string endpoints satisfy a set of mixed commutation relations among themselves. Identifying X and P with the coordinates and derivatives of the D-brane world volume, we find a new type of noncommutative spaces which is very different from those associated with a constant B field background.Comment: 11 pages, Latex, minor modification

    Analysis of opposed jet hydrogen-air counter flow diffusion flame

    Get PDF
    A computational simulation of the opposed-jet diffusion flame is performed to study its structure and extinction limits. The present analysis concentrates on the nitrogen-diluted hydrogen-air diffusion flame, which provides the basic information for many vehicle designs such as the aerospace plane for which hydrogen is a candidate as the fuel. The computer program uses the time-marching technique to solve the energy and species equations coupled with the momentum equation solved by the collocation method. The procedure is implemented in two stages. In the first stage, a one-step forward overal chemical reaction is chosen with the gas phase chemical reaction rate determined by comparison with experimental data. In the second stage, a complete chemical reaction mechanism is introduced with detailed thermodynamic and transport property calculations. Comparison between experimental extinction data and theoretical predictions is discussed. The effects of thermal diffusion as well as Lewis number and Prandtl number variations on the diffusion flame are also presented

    Supersymmetric reduced models with a symmetry based on Filippov algebra

    Full text link
    Generalizations of the reduced model of super Yang-Mills theory obtained by replacing the Lie algebra structure to Filippov nn-algebra structures are studied. Conditions for the reduced model actions to be supersymmetric are examined. These models are related with what we call \{cal N}_{min}=2 super pp-brane actions.Comment: v3: In the previous versions we overlooked that Eq.(3.9) holds more generally, and missed some supersymmetric actions. Those are now included and modifications including a slight change in the title were made accordingly. 1+18 page

    Semimetalic graphene in a modulated electric potential

    Full text link
    The π\pi-electronic structure of graphene in the presence of a modulated electric potential is investigated by the tight-binding model. The low-energy electronic properties are strongly affected by the period and field strength. Such a field could modify the energy dispersions, destroy state degeneracy, and induce band-edge states. It should be noted that a modulated electric potential could make semiconducting graphene semimetallic, and that the onset period of such a transition relies on the field strength. There exist infinite Fermi-momentum states in sharply contrast with two crossing points (Dirac points) for graphene without external fields. The finite density of states (DOS) at the Fermi level means that there are free carriers, and, at the same time, the low DOS spectrum exhibits many prominent peaks, mainly owing to the band-edge states.Comment: 12pages, 5 figure

    The Nonduality of Motion and Rest: Sengzhao on the Change of Things

    Get PDF
    In his essay “Things Do Not Move,” Sengzhao (374?−414 CE), a prominent Chinese Buddhist philosopher, argues for the thesis that the myriad things do not move in time. This view is counter-intuitive and seems to run counter to the Mahayana Buddhist doctrine of emptiness. In this book chapter, I assess Sengzhao’s arguments for his thesis, elucidate his stance on the change/nonchange of things, and discuss related problems. I argue that although Sengzhao is keen on showing the plausibility of the thesis, he actually views the myriad things as both changing and unchanging and upholds the nonduality of motion and rest. In fact, the nonmoving thesis follows from the discernment that things change from moment to moment without there being any enduring stuff in the process. Among philosophical works that confer a higher ontological status on nonchange over change, Sengzhao’s essay is unique and well worth pondering

    Equilibrium spin pulsars unite neutron star populations

    Full text link
    Many pulsars are formed with a binary companion from which they can accrete matter. Torque exerted by accreting matter can cause the pulsar spin to increase or decrease, and over long times, an equilibrium spin rate is achieved. Application of accretion theory to these systems provides a probe of the pulsar magnetic field. We compare the large number of recent torque measurements of accreting pulsars with a high-mass companion to the standard model for how accretion affects the pulsar spin period. We find that many long spin period (P > 100 s) pulsars must possess either extremely weak (B < 10^10 G) or extremely strong (B > 10^14 G) magnetic fields. We argue that the strong-field solution is more compelling, in which case these pulsars are near spin equilibrium. Our results provide evidence for a fundamental link between pulsars with the slowest spin periods and strong magnetic fields around high-mass companions and pulsars with the fastest spin periods and weak fields around low-mass companions. The strong magnetic fields also connect our pulsars to magnetars and strong-field isolated radio/X-ray pulsars. The strong field and old age of our sources suggests their magnetic field penetrates into the superconducting core of the neutron star.Comment: 6 pages, 4 figures; to appear in MNRA

    Estimating Black Hole Masses in Active Galaxies Using the Halpha Emission Line

    Full text link
    It has been established that virial masses for black holes in low-redshift active galaxies can be estimated from measurements of the optical continuum strength and the width of the broad Hbeta line. Under various circumstances, however, both of these quantities can be challenging to measure or can be subject to large systematic uncertainties. To mitigate these difficulties, we present a new method for estimating black hole masses. From analysis of a new sample of broad-line active galactic nuclei, we find that Halpha luminosity scales almost linearly with optical continuum luminosity and that a strong correlation exists between Halpha and Hbeta line widths. These two empirical correlations allow us to translate the standard virial mass system to a new one based solely on observations of the broad Halpha emission line.Comment: to appear in Apj; 8 pages; 5 figures; uses emulateapj5.st
    corecore